983 resultados para geolocalización IP
Resumo:
The neuroprotective effect of the immunosuppressant agent FK506 was evaluated in rats after brain ischemia induced for 15 min in the 4-vessel occlusion model. In the first experimental series, single doses of 1.0, 3.0 or 6.0 mg FK506/kg were given intravenously (iv) immediately after ischemia. In the second series, FK506 (1.0 mg/kg) was given iv at the beginning of reperfusion, followed by doses applied intraperitoneally (ip) 6, 24, 48, and 72 h post-ischemia. The same protocol was used in the third series except that all 5 doses were given iv. Damage to the hippocampal field CA1 was assessed 7 or 30 days post-ischemia on three different stereotaxic planes along the septotemporal axis of the hippocampus. Ischemia caused marked neurodegeneration on all planes (P<0.001). FK506 failed to provide neuroprotection to CA1 both when applied iv as a single dose of 1.0, 3.0 or 6.0 mg/kg (experiment 1), and after five iv injections of 1.0 mg/kg (experiment 3). In contrast, the repeated administration of FK506 combining iv plus ip administration reduced CA1 cell death on all stereotaxic planes both 7 and 30 days post-ischemia (experiment 2; P<=0.01). Compared to vehicle alone, FK506 reduced rectal temperature in a dose-dependent manner (P<=0.05); however, this effect did not alter normothermia (37ºC). FK506 reduced ischemic brain damage, an effect sustained over time and apparently dependent on repeated doses and on delivery route. The present data extend previous findings on the rat 4-vessel occlusion model, further supporting the possible use of FK506 in the treatment of ischemic brain damage.
Resumo:
Dopamine constitutes about 80% of the content of central catecholamines and has a crucial role in the etiology of several neuropsychiatric disorders, including Parkinson's disease, depression and schizophrenia. Several dopaminergic drugs are used to treat these pathologies, but many problems are attributed to these therapies. Within this context, the search for new more efficient dopaminergic agents with less adverse effects represents a vast research field. The aim of the present study was to report the structural design of two N-phenylpiperazine derivatives, compound 4: 1-[1-(4-chlorophenyl)-1H-4-pyrazolylmethyl]-4-phenylhexahydropyrazine and compound 5: 1-[1-(4-chlorophenyl)-1H-1,2,3-triazol-4-ylmethyl]-4-phenylhexahydropyrazine, planned to be dopamine ligands, and their dopaminergic action profile. The two compounds were assayed (dose range of 15-40 mg/kg) in three experimental models: 1) blockade of amphetamine (30 mg/kg, ip)-induced stereotypy in rats; 2) the catalepsy test in mice, and 3) apomorphine (1 mg/kg, ip)-induced hypothermia in mice. Both derivatives induced cataleptic behavior (40 mg/kg, ip) and a hypothermic response (30 mg/kg, ip) which was not prevented by haloperidol (0.5 mg/kg, ip). Compound 5 (30 mg/kg, ip) also presented a synergistic hypothermic effect with apomorphine (1 mg/kg, ip). Only compound 4 (30 mg/kg, ip) significantly blocked the amphetamine-induced stereotypy in rats. The N-phenylpiperazine derivatives 4 and 5 seem to have a peculiar profile of action on dopaminergic functions. On the basis of the results of catalepsy and amphetamine-induced stereotypy, the compounds demonstrated an inhibitory effect on dopaminergic behaviors. However, their hypothermic effect is compatible with the stimulation of dopaminergic function which seems not to be mediated by D2/D3 receptors.
Resumo:
The aim of the present study was to assess the analgesic activity of the aerial parts of two Hypericum species native to Southern Brazil, H. caprifoliatum and H. polyanthemum. The antinociceptive effect of the H. polyanthemum cyclohexane extract (POL; 180 mg/kg) and of the H. caprifoliatum methanol (MET) and cyclohexane (CH) extracts (90 mg/kg) was evaluated in the hot-plate (ip and po) and writhing (po) tests using male Swiss CF1 mice weighing 22-27 g (N = 10 per group). All extracts displayed antinociceptive effects in the hot-plate test (MET ip = 48%, MET po = 39%, CH ip = 27%, CH po = 50%, POL ip = 74%, and POL po = 49% compared to control). Pretreatment with naloxone (2.5 mg/kg, sc) abolished the effects of CH and POL, and partially prevented the analgesia induced by MET administered by the ip (but not by the po) route. POL and CH (po) significantly reduced the number of writhes induced by acetic acid, while MET was ineffective in this regard. We conclude that the antinociceptive effects of the H. caprifoliatum (CH) and H. polyanthemum (POL) hexane extracts seem to be mediated by the opioid system. Moreover, the antinociceptive activity of the H. caprifoliatum MET extract seems to depend on at least two chemical substances (or groups of substances) with distinct pharmacokinetic profiles and mechanisms of action. Only the naloxone-insensitive component of MET activity showed good bioavailability following oral administration.
Resumo:
Cytochrome P450 (CYP) 2A enzymes are involved in the metabolism of numerous drugs and hormones and activate different carcinogens. Human CYP2A6, mouse CYP2A5 and rat CYP2A3 are orthologous enzymes that present high similarity in their amino acid sequence and share substrate specificities. However, different from the human and mouse enzyme, CYP2A3 is not expressed in the rat liver. There are limited data about expression of CYP2A3 in extrahepatic tissues and its regulation by typical CYP inducers. Therefore, the objective of the present study was to analyze CYP2A3 mRNA expression in different rat tissues by RT-PCR, and to study the influence of 3-methylcholanthrene, pyrazole and ß-ionone treatment on its expression. Male Wistar rats were divided into four groups of 5 rats each, and were treated ip for 4 days with 3-methylcholanthrene (25 mg/kg body weight), pyrazole (150 mg/kg body weight), ß-ionone (1 g/kg body weight), or vehicle. Total RNA was extracted from tissues and CYP2A3 mRNA levels were analyzed by semiquantitative RT-PCR. CYP2A3 mRNA was constitutively expressed in the esophagus, lung and nasal epithelium, but not along the intestine, liver, or kidney. CYP2A3 mRNA levels were increased in the esophagus by treatment with 3-methylcholanthrene and pyrazole (17- and 7-fold, respectively), in lung by pyrazole and ß-ionone (3- and 4-fold, respectively, although not statistically significant), in the distal part of the intestine and kidney by 3-methylcholanthrene and pyrazole, and in the proximal part of the intestine by pyrazole. CYP2A3 mRNA was not induced in nasal epithelium, liver or in the middle part of the intestine. These data show that, in the rat, CYP2A3 is constitutively expressed in several extrahepatic tissues and its regulation occurs through a complex mechanism that is essentially tissue specific.
Resumo:
The literature indicates that acute pancreatitis is a complication of massive hemolysis with a prevalence of about 20%. We describe an experimental model of hemolysis-induced acute pancreatitis. Hemolytic anemia was induced in rats by a single ip injection of 60 mg/kg of 20 mg/ml acetylphenylhydrazine (APH) in 20% (v/v) ethanol on the first experimental day (day 0). One hundred and fifty Wistar albino rats weighing 180-200 g were divided into three groups of 50 animals each: groups 1, 2 and 3 were injected ip with APH, 20% ethanol, and physiological saline, respectively. Ten rats from each group were sacrificed on study days 1, 2, 3, 4 and 5. Serum amylase, lipase levels and pancreatic tissue tumor necrosis factor-alpha (TNF-alpha) and platelet-activating factor (PAF) contents were determined and a histological examination of the pancreas was performed. No hemolysis or pancreatitis was observed in any of the rats in groups 2 and 3. In group 1, massive hemolysis was observed in 35 (70%) of 50 rats, moderate hemolysis in seven (14%), and no hemolysis in eight (16%). Thirty-three of 35 (94.2%) rats with massive hemolysis had hyperamylasemia, and 29 of these rats (82.8%) had histologically proven pancreatitis. The most severe pancreatitis occurred on day 3, as demonstrated by histology. Tissue TNF-alpha and PAF levels were statistically higher in group 1 than in groups 2 and 3. Acute massive hemolysis induced acute pancreatitis, as indicated by histology, in almost 80% of cases. Hemolysis may induce acute pancreatitis by triggering the release of proinflammatory and immunoregulatory cytokines.
Resumo:
We investigated the effect of L-NAME, a nitric oxide (NO) inhibitor and sodium nitroprusside (SNP), an NO-donating agent, on pilocarpine-induced alterations in salivary flow, mean arterial blood pressure (MAP) and heart rate (HR) in rats. Male Holtzman rats (250-300 g) were implanted with a stainless steel cannula directly into the median preoptic nucleus (MnPO). Pilocarpine (10, 20, 40, 80, 160 µg) injected into the MnPO induced an increase in salivary secretion (P<0.01). Pilocarpine (1, 2, 4, 8, 16 mg/kg) ip also increased salivary secretion (P<0.01). Injection of L-NAME (40 µg) into the MnPO prior to pilocarpine (10, 20, 40, 80, 160 µg) injected into the MnPO or ip (1, 2, 4, 8, 16 mg/kg) increased salivary secretion (P<0.01). SNP (30 µg) injected into the MnPO or ip prior to pilocarpine attenuated salivary secretion (P<0.01). Pilocarpine (40 µg) injection into the MnPO increased MAP and decreased HR (P<0.01). Pilocarpine (4 mg/kg body weight) ip produced a decrease in MAP and an increase in HR (P<0.01). Injection of L-NAME (40 µg) into the MnPO prior to pilocarpine potentiated the increase in MAP and reduced HR (P<0.01). SNP (30 µg) injected into the MnPO prior to pilocarpine attenuated (100%) the effect of pilocarpine on MAP, with no effect on HR. Administration of L-NAME (40 µg) into the MnPO potentiated the effect of pilocarpine injected ip. SNP (30 µg) injected into the MnPO attenuated the effect of ip pilocarpine on MAP and HR. The present study suggests that in the rat MnPO 1) NO is important for the effects of pilocarpine on salivary flow, and 2) pilocarpine interferes with blood pressure and HR (side effects of pilocarpine), that is attenuated by NO.
Resumo:
Different patterns of granulomas have been observed in 6- to 8-week-old mice after ip inoculation with 5 x 10(6) yeast cells of Paracoccidioides brasiliensis. Transforming growth factor-ß (TGF-ß) is a cytokine that has been shown to participate in fibrosis and granuloma formation; its activities seem to be modulated by the small proteoglycan decorin. In the present study, TGF-ß and decorin expression in epiploon granulomas was assessed by immunohistochemistry in susceptible (B10.A) and resistant (A/J) mice after 15, 30, 120 and 150 days of P. brasiliensis ip infection. The epiploon was collected, fixed in Methacarn solution and embedded in paraffin, and 5-µm thick sections were used for immunohistochemical analysis employing the streptavidin-biotin-peroxidase technique. The former mouse strain developed fatal disease with many disseminated lesions increasing in size and number during the infection and the latter developed mild disease with the presence of encapsulated granulomas. In the epiploon, TGF-ß was present on macrophages, giant cells, lymphocytes and fibroblasts, and absent on neutrophils. It was also detected in areas of fibrosis and necrosis, as well as disperse in amorphous extracellular matrix, mostly in resistant mice. Decorin was present circumscribing macrophages and giant cells containing fungi, but absent on these cells. In both mouse strains, decorin was found at the periphery of the lesions, and markedly in milky spot granulomas. In resistant mice, positivity was found around fibrotic and necrotic areas of encapsulated and residual lesions containing lysed fungi. Decorin was found associated with thick fibers around encapsulated lesions. In susceptible mice, the size and number of lesions increased with the progression of the disease and were correlated with the weaker expression of decorin. We suggest an association of decorin with the fibrogenic process observed in paracoccidioidal granulomas.
Resumo:
Rats infected with the helminth Capillaria hepatica regularly develop septal fibrosis of the liver similar to that induced by repeated ip injections of pig serum. Fibrosis starts when the focal parasitic lesions begin to show signs of resorption, thus suggesting an immunologically mediated pathogenesis of this fibrosis. To explore this possibility, the development of C. hepatica-related hepatic fibrosis was observed in rats exposed to worm antigens from the first neonatal day onward. Wistar rats (150 g) were either injected ip with an extract of C. hepatica eggs (protein concentration: 1 mg/ml) or received immature eggs by gavage from the first neonatal day until adult life and were then infected with 500 embryonated eggs. Changes were monitored on the basis of serum levels of anti-worm antibodies and hepatic histopathology. Rats submitted to immunological oral tolerance markedly suppressed C. hepatica-related serum antibodies and septal fibrosis of the liver when infected with the helminth later on. Tolerance trials with ip injections of worm antigens gave essentially negative results. The partial suppression of septal fibrosis of the liver after the induction of immunological tolerance to C. hepatica antigens in rats indicates an immunological basis for the fibrosis and emphasizes the importance of immunological factors in the pathogenesis of hepatic fibrosis.
Resumo:
Plants from the genus Alternanthera are thought to possess antimicrobial and antiviral properties. In Brazilian folk medicine, the aqueous extract of A. tenella Colla is used for its anti-inflammatory activity. The present study investigated the immunomodulatory property of A. tenella extract by evaluating the antibody production in male albino Swiss mice weighing 20-25 g (10 per group). The animals received standard laboratory diet and water ad libitum. The effect of A. tenella extract (5 and 50 mg/kg, ip) was evaluated in mice immunized with sheep red blood cells (SRBC 10%, ip) as T-dependent antigen, or in mice stimulated with mitogens (10 µg, Escherichia coli lipopolysaccharide, LPS, ip). The same doses (5 and 50 mg/kg, ip) of A. tenella extract were also tested for antitumor activity, using the Ehrlich ascites carcinoma as model. The results showed that 50 mg/kg A. tenella extract ip significantly enhanced IgM (64%) and IgG2a (50%) antibody production in mice treated with LPS mitogen. The same dose had no effect on IgM-specific response, whereas the 5 mg/kg treatment caused a statiscally significant reduction of anti-SRBC IgM-specific antibodies (82%). The aqueous extract of A. tenella (50 mg/kg) increased the life span (from 16 ± 1 to 25 ± 1 days) and decreased the number of viable tumor cells (59%) in mice with Ehrlich ascites carcinoma. The present findings are significant for the development of alternative, inexpensive and perhaps even safer strategies for cancer treatment.
Resumo:
It was previously reported that systemic administration of dipyrone inhibited the tonic component of generalized tonic-clonic seizures in both the electroshock and the audiogenic seizure models. The aim of the present study was to investigate the mechanisms involved in the anticonvulsant action of dipyrone by assessing the role of nitric oxide and opioids in the electroshock (female 60- to 90-day-old Wistar rats, N = 5-11) and audiogenic seizure (female 60- to 90-day-old Wistar audiogenic rats, N = 5-11) models of epilepsy. Naloxone (5 mg/kg, sc) significantly reversed the anticonvulsant effect of dipyrone in rats submitted to the induction of audiogenic seizures (ANOVA/Bonferroni's test), suggesting the involvement of opioid peptides in this action. In the electroshock model no reversal of the anticonvulsant effect of dipyrone by naloxone (5 mg/kg, sc) was demonstrable. The acute (120 mg/kg, ip) and chronic (25 mg/kg, ip, twice a day/4 days) administration of L-NOARG did not reverse the anticonvulsant action of dipyrone in the audiogenic seizure model, suggesting that the nitric oxide pathway does not participate in such effect. Indomethacin (10, 20 and 30 mg/kg, ip) used for comparison had no anticonvulsant effect in the audiogenic seizure model. In conclusion, opioid peptides but not nitric oxide seem to be involved in the anticonvulsant action of dipyrone in audiogenic seizures.
Resumo:
Tumor necrosis factor-alpha (TNF-alpha) is one of the most important proinflammatory cytokines which plays a central role in host defense and in the acute inflammatory response related to tissue injury. The major source of TNF-alpha are immune cells such as neutrophils and macrophages. We tested the hypothesis that pentoxifylline, a methylxanthine derivative, down-regulates proinflammatory cytokine expression during acute lung injury in rats. Male Wistar rats weighing 250 to 450 g were anesthetized ip with 50 mg/kg sodium thiopental and randomly divided into three groups: group 1 (N = 7): tidal volume (V T) = 7 ml/kg, respiratory rate (RR) = 50 breaths/min and normal saline infusion; group 2 (N = 7): V T = 42 ml/kg, RR = 9 breaths/min and normal saline infusion; group 3 (N = 7): V T = 42 ml/kg, RR = 9 breaths/min and pentoxifylline infusion. The animals were ventilated with an inspired oxygen fraction of 1.0, a positive end-expiratory pressure of 3 cmH2O, and normal saline or pentoxifylline injected into the left femoral vein. The mRNA of TNF-alpha rapidly increased in the lung tissue within 180 min of ventilation with a higher V T with normal saline infusion. The concentrations of inflammatory mediators were decreased in plasma and bronchoalveolar lavage (BAL) in the presence of higher V T with pentoxifylline infusion (TNF-alpha: plasma, 102.2 ± 90.9 and BAL, 118.2 ± 82.1; IL-1ß: plasma, 45.2 ± 42.7 and BAL, 50.2 ± 34.9, P < 0.05). We conclude that TNF-alpha produced by neutrophil influx may function as an alert signal in host defense to induce production of other inflammatory mediators.
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.
Resumo:
An alkali-insoluble fraction 1 (F1), which contains mainly ß-glucan isolated from the cell wall of Histoplasma capsulatum, induces eosinophil recruitment into the peritoneal cavity of mice. The present study was carried out to determine the participation of interleukin-5 (IL-5) in this process. Inbred C57BL/6 male mice weighing 15-20 g were treated ip with 100 µg of anti-IL-5 monoclonal antibody (TRFK-5, N = 7) or an isotype-matched antibody (N = 7), followed by 300 µg F1 in 1 ml PBS ip 24 h later. Controls (N = 5) received only 1 ml PBS. Two days later, cells from the peritoneal cavity were harvested by injection of 3 ml PBS and total cell counts were determined using diluting fluid in a Neubauer chamber. Differential counts were performed using Rosenfeld-stained cytospin preparations. The F1 injection induced significant (P < 0.01) leukocyte recruitment into the peritoneal cavity (8.4 x 10(6) cells/ml) when compared with PBS alone (5.5 x 10(6) cells/ml). Moreover, F1 selectively (P < 0.01) induced eosinophil recruitment (1 x 10(6) cells/ml) when compared to the control group (0.07 x 10(6) cells/ml). Treatment with TRFK-5 significantly (P < 0.01) inhibited eosinophil recruitment (0.18 x 10(6) cells/ml) by F1 without affecting recruitment of mononuclear cells or neutrophils. We conclude that the F1 fraction of the cell wall of H. capsulatum induces peritoneal eosinophilia by an IL-5-dependent mechanism. Depletion of this cytokine does not have effect on the recruitment of other cell types induced by F1.
Resumo:
The frequent use of nonsteroidal anti-inflammatory drugs (NSAID) in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1) is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g) were treated with gentamicin (100 mg/kg body weight, ip, N = 7), indomethacin (5 mg/kg, orally, N = 7), rofecoxib (1.4 mg/kg, orally, N = 7), gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively) or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8) for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 ± 0.019 ml/min), as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 ± 0.011 ml/min). These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.
Resumo:
Bryothamnion seaforthii, a red alga common to the Northeastern coast of Brazil, was used to prepare the protein fraction F0/60 by ammonium sulfate precipitation. The chromatography of F0/60 on DEAE-Sephadel column resulted in two lectin fractions, PI and PII, which have antinociceptive properties in rodents. We determined the antinociceptive activity of the PII fraction and of a carbohydrate-containing fraction (CF) in mice. The CF was prepared from the dried algae, after digestion with 100 mM sodium acetate, pH 6.0, containing 5 mM cysteine, EDTA and 0.4% papain, at 60ºC. A 10% cetylpyridinium chloride was added to the filtrate, and the precipitate was dissolved with 2 M NaCl:ethanol (100:15, v/v) followed by the carbohydrate precipitation with ethanol. The final precipitate, in acetone, was dried at 25ºC. The PII fraction markedly inhibited acetic acid-induced abdominal writhing after ip administration (control: 27.1 ± 2.20; PII 0.1 mg/kg: 5.5 ± 1.85; 1 mg/kg: 1.6 ± 0.72 writhes/20 min) and after oral administration (control: 32.0 ± 3.32; PII 0.1 mg/kg: 13.1 ± 2.50; 1 mg/kg: 9.4 ± 3.96 writhes/20 min). PII was also effective against both phases of pain induced by 1% formalin (control, ip: 48.2 ± 2.40 and 27.7 ± 2.56 s; PII: 1 mg/kg, ip: 34.3 ± 5.13 and 5.6 ± 2.14 s; control, po: 44.5 ± 3.52 and 25.6 ± 2.39 s; PII 5 mg/kg, po: 26.5 ± 4.67 and 15.3 ± 3.54 s for the 1st and 2nd phases, respectively) and in the hot-plate test. The CF (ip) also displayed significant antinociceptive properties in all tests but at higher doses (1 and 5 mg/kg, ip and po). Thus, CF at the dose of 5 mg/kg significantly inhibited writhes (ip: 7.1 ± 2.47 and po: 14.5 ± 2.40 writhes/20 min) as well as the 1st (po: 19.6 ± 1.74 s) and 2nd (po: 7.1 ± 2.24 s) phases of the formalin test compared to controls ip and po. The antinociceptive effects of both the PII and CF in the formalin and hot-plate tests were prevented at least partially by pretreatment with the opioid receptor antagonist naloxone (2 mg/kg, sc). Moreover, both fractions retained antinociceptive activity in the acetic acid-induced writhing test following heating, a procedure which abolished the hemagglutinating activity of the fraction, presumably due to lectins also present. Finally, both fractions also prolonged the barbiturate-induced sleeping time. These results indicate that carbohydrate molecules present in the PII (26.8% carbohydrate) and CF (21% of the alga dried weight) obtained from B. seaforthii display pronounced antinociceptive activity which is resistant to heat denaturation and is mediated by an opioid mechanism, as indicated by naloxone inhibition.