973 resultados para gait energy image


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spike detection in neural recordings is the initial step in the creation of brain machine interfaces. The Teager energy operator (TEO) treats a spike as an increase in the `local' energy and detects this increase. The performance of TEO in detecting action potential spikes suffers due to its sensitivity to the frequency of spikes in the presence of noise which is present in microelectrode array (MEA) recordings. The multiresolution TEO (mTEO) method overcomes this shortcoming of the TEO by tuning the parameter k to an optimal value m so as to match to frequency of the spike. In this paper, we present an algorithm for the mTEO using the multiresolution structure of wavelets along with inbuilt lowpass filtering of the subband signals. The algorithm is efficient and can be implemented for real-time processing of neural signals for spike detection. The performance of the algorithm is tested on a simulated neural signal with 10 spike templates obtained from [14]. The background noise is modeled as a colored Gaussian random process. Using the noise standard deviation and autocorrelation functions obtained from recorded data, background noise was simulated by an autoregressive (AR(5)) filter. The simulations show a spike detection accuracy of 90%and above with less than 5% false positives at an SNR of 2.35 dB as compared to 80% accuracy and 10% false positives reported [6] on simulated neural signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images and brands have been topics of great interest in both academia and practice for a long time. The company’s image, which in this study is considered equivalent to the actual corporate brand, has become a strategic issue and one of the company’s most valuable assets. In contrast to mainstream corporate branding research focusing on consumerimages as steered and managed by the company, in the present study a genuine consumer-focus is taken. The question is asked: how do consumers perceive the company, and especially, how are their experiences of the company over time reflected in the corporate image? The findings indicate that consumers’ corporate images can be seen as being constructed through dynamic relational processes based on a multifaceted network of earlier images from multiple sources over time. The essential finding is that corporate images have a heritage. In the thesis, the concept of image heritage is introduced, which stands for the consumer’s earlier company-related experiences from multiple sources over time. In other words, consumers construct their images of the company based on earlier recalled images, perhaps dating back many years in time. Therefore, corporate images have roots - an image heritage – on which the images are constructed in the present. For companies, image heritage is a key for understanding consumers, and thereby also a key for consumer-focused branding strategies and activities. As image heritage is the consumer’s interpretation base and context for image constructions here and now, branding strategies and activities that meet this consumer-reality has a potential to become more effective. This thesis is positioned in the tradition of The Nordic School of Marketing Thought and introduces a relational dynamic perspective into branding through consumers’ image heritage. Anne Rindell is associated to CERS, the Center for Relationship Marketing and Service Management at the Swedish School of Economics and Business Administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denoising of images in compressed wavelet domain has potential application in transmission technology such as mobile communication. In this paper, we present a new image denoising scheme based on restoration of bit-planes of wavelet coefficients in compressed domain. It exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each band. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with conventional unrestored scheme, in context of error reduction and has capability to adapt to situations where noise level in the image varies. The applicability of the proposed approach has implications in restoration of images due to noisy channels. This scheme, in addition, to being very flexible, tries to retain all the features, including edges of the image. The proposed scheme is computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In positron emission tomography (PET), image reconstruction is a demanding problem. Since, PET image reconstruction is an ill-posed inverse problem, new methodologies need to be developed. Although previous studies show that incorporation of spatial and median priors improves the image quality, the image artifacts such as over-smoothing and streaking are evident in the reconstructed image. In this work, we use a simple, yet powerful technique to tackle the PET image reconstruction problem. Proposed technique is based on the integration of Bayesian approach with that of finite impulse response (FIR) filter. A FIR filter is designed whose coefficients are determined based on the surface diffusion model. The resulting reconstructed image is iteratively filtered and fed back to obtain the new estimate. Experiments are performed on a simulated PET system. The results show that the proposed approach is better than recently proposed MRP algorithm in terms of image quality and normalized mean square error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usually digital image forgeries are created by copy-pasting a portion of an image onto some other image. While doing so, it is often necessary to resize the pasted portion of the image to suit the sampling grid of the host image. The resampling operation changes certain characteristics of the pasted portion, which when detected serves as a clue of tampering. In this paper, we present deterministic techniques to detect resampling, and localize the portion of the image that has been tampered with. Two of the techniques are in pixel domain and two others in frequency domain. We study the efficacy of our techniques against JPEG compression and subsequent resampling of the entire tampered image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose two texture-based approaches, one involving Gabor filters and the other employing log-polar wavelets, for separating text from non-text elements in a document image. Both the proposed algorithms compute local energy at some information-rich points, which are marked by Harris' corner detector. The advantage of this approach is that the algorithm calculates the local energy at selected points and not throughout the image, thus saving a lot of computational time. The algorithm has been tested on a large set of scanned text pages and the results have been seen to be better than the results from the existing algorithms. Among the proposed schemes, the Gabor filter based scheme marginally outperforms the wavelet based scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustered architecture processors are preferred for embedded systems because centralized register file architectures scale poorly in terms of clock rate, chip area, and power consumption. Although clustering helps by improving clock speed, reducing energy consumption of the logic, and making the design simpler, it introduces extra overheads by way of inter-cluster communication. This communication happens over long global wires which leads to delay in execution and significantly high energy consumption.In this paper, we propose a new instruction scheduling algorithm that exploits scheduling slacks of instructions and communication slacks of data values together to achieve better energy-performance trade-offs for clustered architectures with heterogeneous interconnect. Our instruction scheduling algorithm achieves 35% and 40% reduction in communication energy, whereas the overall energy-delay product improves by 4.5% and 6.5% respectively for 2 cluster and 4 cluster machines with marginal increase (1.6% and 1.1%) in execution time. Our test bed uses the Trimaran compiler infrastructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural network finds its application in many image denoising applications because of its inherent characteristics such as nonlinear mapping and self-adaptiveness. The design of filters largely depends on the a-priori knowledge about the type of noise. Due to this, standard filters are application and image specific. Widely used filtering algorithms reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design a finite impulse response filter based on principal component neural network (PCNN) is proposed in this study for image filtering, optimized in the sense of visual inspection and error metric. This algorithm exploits the inter-pixel correlation by iteratively updating the filter coefficients using PCNN. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions. Further, the number of unknown parameters is very few and most of these parameters are adaptively obtained from the processed image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denoising of medical images in wavelet domain has potential application in transmission technologies such as teleradiology. This technique becomes all the more attractive when we consider the progressive transmission in a teleradiology system. The transmitted images are corrupted mainly due to noisy channels. In this paper, we present a new real time image denoising scheme based on limited restoration of bit-planes of wavelet coefficients. The proposed scheme exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each sub-band. The desired bit-rate control is achieved by applying the restoration on a limited number of bit-planes subject to the optimal smoothing. The proposed method adapts itself to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with unrestored case, in context of error reduction. It also has capability to adapt to situations where noise level in the image varies and with the changing requirements of medical-experts. The applicability of the proposed approach has implications in restoration of medical images in teleradiology systems. The proposed scheme is computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image filtering techniques have potential applications in biomedical image processing such as image restoration and image enhancement. The potential of traditional filters largely depends on the apriori knowledge about the type of noise corrupting the image. This makes the standard filters to be application specific. For example, the well-known median filter and its variants can remove the salt-and-pepper (or impulse) noise at low noise levels. Each of these methods has its own advantages and disadvantages. In this paper, we have introduced a new finite impulse response (FIR) filter for image restoration where, the filter undergoes a learning procedure. The filter coefficients are adaptively updated based on correlated Hebbian learning. This algorithm exploits the inter pixel correlation in the form of Hebbian learning and hence performs optimal smoothening of the noisy images. The application of the proposed filter on images corrupted with Gaussian noise, results in restorations which are better in quality compared to those restored by average and Wiener filters. The restored image is found to be visually appealing and artifact-free

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denoising of images in compressed wavelet domain has potential application in transmission technology such as mobile communication. In this paper, we present a new image denoising scheme based on restoration of bit-planes of wavelet coefficients in compressed domain. It exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each band. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with conventional unrestored scheme, in context of error reduction and has capability to adapt to situations where noise level in the image varies. The applicability of the proposed approach has implications in restoration of images due to noisy channels. This scheme, in addition, to being very flexible, tries to retain all the features, including edges of the image. The proposed scheme is computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All companies have a portfolio of customer relationships. From a managerial standpoint the value of these customer relationships is a key issue. The aim of the paper is to introduce a conceptual framework for customers’ energy towards a service provider. Customer energy is defined as the cognitive, affective and behavioural effort a customer puts into the purchase of an offering. It is based on two dimensions: life theme involvement and relationship commitment. Data from a survey study of 425 customers of an online gambling site was combined with data about their individual purchases and activity. Analysis showed that involvement and commitment influence both customer behaviour and attitudes. Customer involvement was found to be strongly related to overall spending within a consumption area, whereas relationship commitment is a better predictor of the amount of money spent at a particular company. Dividing the customers into four different involvement / commitment segments revealed differences in churn rates, word-of-mouth, brand attitude, switching propensity and the use of the service for socializing. The framework provides a tool for customer management by revealing differences in fundamental drivers of customer behaviour resulting in completely new customer portfolios. Knowledge of customer energy allows companies to manage their communication and offering development better and provides insight into the risk of losing a customer.