985 resultados para frost tolerance genes
Resumo:
Background: Renal interstitial fibrosis and glomerular sclerosis are hallmarks of diabetic nephropathy (DN) and several studies have implicated members of the WNT pathways in these pathological processes. This study comprehensively examined common genetic variation within the WNT pathway for association with DN.
Methods: Genes within the WNT pathways were selected on the basis of nominal significance and consistent direction of effect in the GENIE meta-analysis dataset. Common SNPs and common haplotypes were examined within the selected WNT pathway genes in a white population with type 1 diabetes, discordant for DN (cases: n = 718; controls: n = 749). SNPs were genotyped using Sequenom or Taqman assays. Association analyses were performed using PLINK, to compare allele and haplotype frequencies in cases and controls. Correction for multiple testing was performed by either permutation testing or using false discovery rate.
Results: A logistic regression model including collection centre, duration of diabetes, and average HbA1c as covariates highlighted three SNPs in GSK3B (rs17810235, rs17471, rs334543), two in DAAM1 (rs1253192, rs1252906) and one in NFAT5 (rs17297207) as being significantly (P< 0.05) associated with DN, however these SNPs did not remain significant after correction for multiple testing. Logistic regression of haplotypes, with ESRD as the outcome, and pairwise interaction analyses did not yield any significant results after correction for multiple testing.
Conclusions: These results indicate that both common SNPs and common haplotypes of WNT pathway genes are not strongly associated with DN. However, this does not completely exclude these or the WNT pathways from association with DN, as unidentified rare genetic or copy number variants could still contribute towards the genetic architecture of DN.© 2013 Kavanagh et al.; licensee BioMed Central Ltd.
Resumo:
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.
Resumo:
Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this
ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4 but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment, gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further development of gene ranking strategies using more carefully selected sources of information is warranted.
Resumo:
The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1-CUL1-F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis embryogenesis and postembryonic development through analysis of the ask1 ask2 double mutant. Our detailed analysis indicates that the double mutations in both ASK1 and ASK2 affect cell division and cell expansion/elongation and cause a developmental delay during embryogenesis and lethality in seedling growth. The expression patterns of ASK1 and ASK2 were examined further and found to be consistent with their roles in embryogenesis and seedling development. We propose that mutations in ASK1 and ASK2 abolish all of the ASK1- and ASK2-based SCF and non-SCF complexes, resulting in alteration of gene expression and leading to defects in growth and development.
Resumo:
The activity of aminoglycosides, used to treat Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF) patients, is reduced under the anaerobic conditions that reflect the CF lung in vivo. In contrast, a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T), under investigation for use in the treatment of CF lung infection, has increased activity against P. aeruginosa under anaerobic conditions. The aim of this study was to elucidate the mechanisms underlying the increased activity of F:T under anaerobic conditions. Microarray analysis was used to identify the transcriptional basis of increased F:T activity under anaerobic conditions, and key findings were confirmed by microbiological tests including nitrate utilization assays, growth curves and susceptibility testing. Notably, growth in sub-inhibitory concentrations of F:T, but not tobramycin or fosfomycin alone, significantly downregulated (p <0.05) nitrate reductase genes narG and narH, essential for normal anaerobic growth of P. aeruginosa. Under anaerobic conditions, F:T significantly decreased (p
Resumo:
A single base deletion (211delG) in the low density lipoprotein receptor (LDLR) gene was shown to cause familial hypercholesterolaemia (FH) in a large family from Northern Ireland. Twenty-four of 52 family members tested had this mutation, 13 of which were newly diagnosed. Mutation-positive individuals had significantly higher mean total-cholesterol (TC) and LDL-cholesterol (LDL-C) than those without 211delG. LDL-C was a more accurate indicator of disease status than TC, When TC levels alone were considered, in individuals over 16 years, a false negative rate (TC <7.5 mmol/l) of 40% was found; however, this fell to 13% based on inclusion of LDL-C levels. Individuals with coronary artery disease (CAD) had significantly higher TC levels than those without CAD and tended to have tendinous xanthomas (TX) and corneal arcus (CA). Genetic polymorphisms in the angiotensin converting enzyme (ACE) and apolipoprotein (ape) B genes did not appear to be associated with lipid levels or with the clinical severity of the disease; however, the apo E e4 allele did show a lipid-raising effect in individuals with the mutation.
Resumo:
The response of arsenate and non-tolerant Holcus lanatus L. phenotypes, where tolerance is achieved through suppression of high affinity phosphate/arsenate root uptake, was investigated under different growth regimes to investigate why there is a polymorphism in tolerance found in populations growing on uncontaminated soil. Tolerant plants screened from an arsenic uncontaminated population differed, when grown on the soil from the populations origin, from non-tolerants, in their biomass allocation under phosphate fertilization: non-tolerants put more resources into tiller production and down regulated investment in root production under phosphate fertilization while tolerants tillered less effectively and did not alter resource allocation to shoot biomass under phosphate fertilization. The two phenotypes also differed in their shoot mineral status having higher concentrations of copper, cadmium, lead and manganese, but phosphorus status differed little, suggesting tight homeostasis. The polymorphism was also widely present (40%) in other wild grass species suggesting an important ecological role for this gene that can be screened through plant root response to arsenate.
Resumo:
From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.
Resumo:
Chromosome 5q22-33 is a region where studies have repeatedly found evidence for linkage to schizophrenia. In this report, we took a stepwise approach to systematically map this region in the Irish Study of High Density Schizophrenia Families (ISHDSF, 267 families, 1337 subjects) sample. We typed 289 SNPs in the critical interval of 8 million basepairs and found a 758 kb interval coding for the SPEC2/PDZ-GEF2/ACSL6 genes to be associated with the disease. Using sex and genotype-conditioned transmission disequilibrium test analyses, we found that 19 of the 24 typed markers were associated with the disease and the associations were sex-specific. We replicated these findings with an Irish case-control sample (657 cases and 414 controls), an Irish parent-proband trio sample (187 families, 564 subjects), a German nuclear family sample (211 families, 751 subjects) and a Pittsburgh nuclear family sample (247 families, 729 subjects). In all four samples, we replicated the sex-specific associations at the levels of both individual markers and haplotypes using sex- and genotype-conditioned analyses. Three risk haplotypes were identified in the five samples, and each haplotype was found in at least two samples. Consistent with the discovery of multiple estrogen-response elements in this region, our data showed that the impact of these haplotypes on risk for schizophrenia differed in males and females. From these data, we concluded that haplotypes underlying the SPEC2/PDZ-GEF2/ACSL6 region are associated with schizophrenia. However, due to the extended high LD in this region, we were unable to distinguish whether the association signals came from one or more of these genes.
Resumo:
Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.
Resumo:
1. Patterns of coexistence and exclusion among resident and invading species in freshwaters may be generated by direct biotic interactions well as by indirect interactions with the broader abiotic and biotic environments. The North American ‘shrimp’ Crangonyx pseudogracilis (Crustacea: Amphipoda) is invasive in Europe where it forms complex patterns of apparent exclusion and coexistence with resident Gammarus spp. amphipods. Using a comprehensive integrated approach, we investigated the potential biotic and interacting abiotic factors driving these distribution patterns.
2. A 2009 of 69 sites revealed that of 56 river sites containing amphipods only 6 contained C. pseudogracilis and these always co-occurred with Gammarus spp.. In contrast, C. pseudogracilis was the only species present in the 12 ponds/reservoirs containing amphipods.
3. Field transplant experiments in ponds and laboratory oxygen tolerance experiments revealed that C. pseudogracilis tolerates physicochemical regimes which Gammarus spp. are incapable of surviving.
4. River microhabitat sampling showed C. pseudogracilis dominating in slower, more pooled and macrophyte-dense patches, while Gammarus spp. were dominant in faster, more riffled areas.
5. Field bioassays indicated that predation of C. pseudogracilis by Gammarus spp. may be frequent in patches of rivers if/when the species meet.
6. River drift sampling revealed that C. pseudogracilis was greatly underrepresented in night/day drift relative to the Gammarus spp.. Laboratory studies showed C. pseudogracilis to be more photophobic and less active than Gammarus spp., both behaviours potentially contributing to low drift prevalence and consequent reduced exposure to shared drift predators.
7. These interacting factors may ultimately contribute to the coexistence, exclusion and relative distributions of C. pseudogracilis and Gammarus spp.. The former is potentially subject to intense predation from the latter if they encounter one another in the same microhabitat. However, with C. pseudogracilis being more physicochemically tolerant and displaying different habitat utilisation patterns than the Gammarus spp. in respect of the benthos and drift, such encounters are probably minimised. Hence C. pseudogracilis can persist in the same sites with the Gammarus spp., albeit in different microhabitats.
Resumo:
Tolerance allocation is an important step in the design process. It is necessary to produce high quality components cost-effectively. However, the process of allocating tolerances can be time consuming and difficult, especially for complex models. This work demonstrates a novel CAD based approach, where the sensitivities of product dimensions to changes in the values of the feature parameters in the CAD model are computed. These are used to automatically establish the assembly response function for the product. This information has been used to automatically allocate tolerances to individual part dimensions to achieve specified tolerances on the assembly dimensions, even for tolerance allocation in more than one direction simultaneously. It is also shown how pre-existing constraints on some of the part dimensions can be represented and how situations can be identified where the required tolerance allocation is not achievable. A methodology is also presented that uses the same information to model a component with different amounts of dimensional variation to simulate the effects of tolerance stack-up. © 2014 Springer-Verlag France.