964 resultados para frequency of genotypes


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We build dynamic models of community assembly by starting with one species in our model ecosystem and adding colonists. We find that the number of species present first increases, then fluctuates about some level. We ask: how large are these fluctuations and how can we characterize them statistically? As in Robert May's work, communities with weaker interspecific interactions permit a greater number of species to coexist on average. We find that as this average increases, however, the relative variation in the number of species and return times to mean community levels decreases. In addition, the relative frequency of large extinction events to small extinction events decreases as mean community size increases. While the model reproduces several of May's results, it also provides theoretical support for Charles Elton's idea that diverse communities such as those found in the tropics should be less variable than depauperate communities such as those found in arctic or agricultural settings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background. Respiratory irregularity has been previously reported in patients with panic disorder using time domain measures. However, the respiratory signal is not entirely linear and a few previous studies used approximate entropy (APEN), a measure of regularity of time series. We have been studying APEN and other nonlinear measures including a measure of chaos, the largest Lyapunov exponent (LLE) of heart rate time series, in some detail. In this study, we used these measures of respiration to compare normal controls (n = 18) and patients with panic disorder (n = 22) in addition to the traditional time domain measures of respiratory rate and tidal volume. Methods: Respiratory signal was obtained by the Respitrace system using a thoracic and an abdominal belt, which was digitized at 500 Hz. Later, the time series were constructed at 4 Hz, as the highest frequency in this signal is limited to 0.5 Hz. We used 256 s of data (1,024 points) during supine and standing postures under normal breathing and controlled breathing at 12 breaths/min. Results: APEN was significantly higher in patients in standing posture during normal as well as controlled breathing (p = 0.002 and 0.02, respectively). LLE was also significantly higher in standing posture during normal breathing (p = 0.009). Similarly, the time domain measures of standard deviations and the coefficient of variation (COV) of tidal volume (TV) were significantly higher in the patient group (p = 0.02 and 0.004, respectively). The frequency of sighs was also higher in the patient group in standing posture (p = 0.02). In standing posture, LLE (p < 0.05) as well as APEN (p < 0.01) contributed significantly toward the separation of the two groups over and beyond the linear measure, i.e. the COV of TV. Conclusion: These findings support the previously described respiratory irregularity in patients with panic disorder and also illustrate the utility of nonlinear measures such as APEN and LLE as additional measures toward a better understanding of the abnormalities of respiratory physiology in similar patient populations as the correlation between LLE, APEN and some of the time domain measures only explained up to 50-60% of the variation. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dielectric response of BaBi2Nb2O9 (BBN) thin films has been studied as a function of frequency over a wide range of temperatures. Both dielectric constant and loss tangent of BBN thin films showed a ‘power law’ dependence with frequency, which was analyzed using the Jonscher's universal dielectric response model. Theoretical fits were utilized to compare the experimental results and also to estimate the value of temperature dependence parameters such as n(T) and a(T) used in the Jonscher's model. The room temperature dielectric constant (ε') of the BBN thin films was 214 with a loss tangent (tanδ) of 0.04 at a frequency of 100 kHz. The films exhibited the second order dielectric phase transition from ferroelectric to paraelectric state at a temperature of 220 °C. The nature of phase transition was confirmed from the temperature dependence of dielectric constant and sponteneous polarization,respectively. The calculated Currie constant for BBN thin films was 4 × 105°C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we investigate the effect of vacuum sealing the backside cavity of a Capacitive Micromachined Ultrasonic Transducer (CMUT). The presence or absence of air inside the cavity has a marked effect upon the system parameters, such as the natural frequency, damping, and the pull-in voltage. The presence of vacuum inside the cavity of the device causes a reduction in the effective gap height which leads to a reduction in the pull-in voltage. We carry out ANSYS simulations to quantify this reduction. The presence of vacuum inside the cavity of the device causes stress stiffening of the membrane, which changes the natural frequency of the device. A prestressed modal analysis is carried out to determine the change in natural frequency due to stress stiffening. The equivalent circuit method is used to evaluate the performance of the device in the receiver mode. The lumped parameters of the device are obtained and an equivalent circuit model of the device is constructed to determine the open circuit receiving sensitivity of the device. The effect of air in the cavity is included by incorporating an equivalent compliance and an equivalent resistance in the equivalent circuit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) (PMN-PT) deposited on platinized silicon substrates with and without template layers were studied. Perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on bare Pt/Ti/SiO2/Si substrates. The films were initially grown at 300 degreesC using pulsed-laser ablation and subsequently annealed in a rapid thermal annealing furnace in the temperature range of 750-850 degreesC to induce crystallization. Comparison of microstructure of the films annealed at different temperatures showed change in perovskite phase formation and grain size etc. Results from compositional analysis of the films revealed that the films initially possessed high content of lead percentage, which subsequently decreased after annealing at temperature 750-850 degreesC. Films with highest perovskite content were found to form at 820-840 degreesC on Pt substrates where the Pb content was near stoichiometric. Further improvement in the formation of perovskite PMN-PT phase was obtained by using buffer layers of La0.5Sr0.5CoO3 (LSCO) on the Pt substrate. This resulted 100% perovskite phase formation in the films deposited at 650 degreesC. Dielectric studies on the PMN-PT films with LSCO template layers showed high values of relative dielectric constant (3800) with a loss factor (tan delta) of 0.035 at a frequency of 1 kHz at room temperature. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presence of vacuum inside the cavity of a capacitive micromachined ultrasonic transducer (CMUT) causes the membrane of the device (which is the main vibrating structural component) to deflect towards the substrate, thereby causing a reduction in the effective gap height. This reduction causes a drastic decrease in the pull-in voltage of the device limiting the DC bias at which the device can be operated for maximum efficiency. In addition, this initial deflection of the membrane due to atmospheric pressure, causes significant stress stiffening of the the membrane, changing the natural frequency of the device significantly from the design value. To circumvent the deleterious effects of vacuum in the sealed cavity, we investigate the possibility of using sealed CMUT cavities with air inside at ambient pressure. In order to estimate the transducer loss due to the presence of air in the sealed cavity, we evaluate the resulting damping and determine the forces acting on the vibrating membrane resulting from the compression of the trapped air film. We take into account the flexure of the top vibrating membrane instead of assuming the motion to be parallel-plate like. Towards this end, we solve the linearized Reynolds equation using the appropriate boundary conditions and show that, for a sealed CMUT cavity, the presence of air does not cause any squeeze film damping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We determine the optimal allocation of power between the analog and digital sections of an RF receiver while meeting the BER constraint. Unlike conventional RF receiver designs, we treat the SNR at the output of the analog front end (SNRAD) as a design parameter rather than a specification to arrive at this optimal allocation. We first determine the relationship of the SNRAD to the resolution and operating frequency of the digital section. We then use power models for the analog and digital sections to solve the power minimization problem. As an example, we consider a 802.15.4 compliant low-IF receiver operating at 2.4 GHz in 0.13 μm technology with 1.2 V power supply. We find that the overall receiver power is minimized by having the analog front end provide an SNR of 1.3dB and the ADC and the digital section operate at 1-bit resolution with 18MHz sampling frequency while achieving a power dissipation of 7mW.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A circular array of Piezoelectric Wafer Active Sensor (PWAS) has been employed to detect surface damages like corrosion using lamb waves. The array consists of a number of small PWASs of 10 mm diameter and 1 mm thickness. The advantage of a circular array is its compact arrangement and large area of coverage for monitoring with small area of physical access. Growth of corrosion is monitored in a laboratory-scale set-up using the PWAS array and the nature of reflected and transmitted Lamb wave patterns due to corrosion is investigated. The wavelet time-frequency maps of the sensor signals are employed and a damage index is plotted against the damage parameters and varying frequency of the actuation signal (a windowed sine signal). The variation of wavelet coefficient for different growth of corrosion is studied. Wavelet coefficient as function of time gives an insight into the effect of corrosion in time-frequency scale. We present here a method to eliminate the time scale effect which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the corrosion with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed for varying damage sizes and the results appear promising.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seismic hazard and microzonation of cities enable to characterize the potential seismic areas that need to be taken into account when designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of geotechnical microzonation maps has been attempted using Geographical Information System (GIS). GIS will provide an effective solution for integrating different layers of information thus providing a useful input for city planning and in particular input to earthquake resistant design of structures in an area. Seismic hazard is the study of expected earthquake ground motions at any point on the earth. Microzonation is the process of sub division of region in to number of zones based on the earthquake effects in the local scale. Seismic microzonation is the process of estimating response of soil layers under earthquake excitation and thus the variation of ground motion characteristic on the ground surface. For the seismic microzonation, geotechnical site characterization need to be assessed at local scale (micro level), which is further used to assess of the site response and liquefaction susceptibility of the sites. Seismotectonic atlas of the area having a radius of 350km around Bangalore has been prepared with all the seismogenic sources and historic earthquake events (a catalogue of about 1400 events since 1906). We have attempted to carryout the site characterization of Bangalore by collating conventional geotechnical boreholes data (about 900 borehole data with depth) and integrated in GIS. 3-D subsurface model of Bangalore prepared using GIS is shown in Figure 1.Further, Shear wave velocity survey based on geophysical method at about 60 locations in the city has been carried out in 220 square Kms area. Site response and local site effects have been evaluated using 1-dimensional ground response analysis. Spatial variability of soil overburden depths, ground surface Peak Ground Acceleration’s(PGA), spectral acceleration for different frequencies, liquefaction susceptibility have been mapped in the 220 sq km area using GIS.ArcInfo software has been used for this purpose. These maps can be used for the city planning and risk & vulnerability studies. Figure 2 shows a map of peak ground acceleration at rock level for Bangalore city. Microtremor experiments were jointly carried out with NGRI scientists at about 55 locations in the city and the predominant frequency of the overburden soil columns were evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the results of the detailed studies on stress - controlled cyclic triaxial tests on sandy soils from Ahmedabad, Gujarat, India subjected to a loading frequency of 0.1 Hz in cyclic triaxial equipment. Undrained stress controlled cyclic triaxial tests were carried out on cylindrical samples of size 50 mm diameter and height 100 mm with different cyclic stress ratios. Laboratory evaluations were carried out to compare the cyclic resistance of clean sand to that of sand with various fines contents at a constant gross void ratio. The gross void ratio considers the voids formed by sand particles and fines. The effects of gross void ratio with and without fines on pore water pressure build up and liquefaction potential of sandy soils in stress controlled tests are presented. The results obtained from this study provide direct evidence that the limiting silt content plays an important role in the cyclic resistance of sandy soils. Below the limiting silt content the cyclic resistance decreases until the limiting silt content is reached and then the cyclic resistance increases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work reported in this thesis is an attempt to enhance heat transfer in electronic devices with the use of impinging air jets on pin-finned heat sinks. The cooling per-formance of electronic devices has attracted increased attention owing to the demand of compact size, higher power densities and demands on system performance and re-liability. Although the technology of cooling has greatly advanced, the main cause of malfunction of the electronic devices remains overheating. The problem arises due to restriction of space and also due to high heat dissipation rates, which have increased from a fraction of a W/cm2to 100s of W /cm2. Although several researchers have at-tempted to address this at the design stage, unfortunately the speed of invention of cooling mechanism has not kept pace with the ever-increasing requirement of heat re- moval from electronic chips. As a result, efficient cooling of electronic chip remains a challenge in thermal engineering. Heat transfer can be enhanced by several ways like air cooling, liquid cooling, phase change cooling etc. However, in certain applications due to limitations on cost and weight, eg. air borne application, air cooling is imperative. The heat transfer can be increased by two ways. First, increasing the heat transfer coefficient (forced convec- tion), and second, increasing the surface area of heat transfer (finned heat sinks). From previous literature it was established that for a given volumetric air flow rate, jet im-pingement is the best option for enhancing heat transfer coefficient and for a given volume of heat sink material pin-finned heat sinks are the best option because of their high surface area to volume ratio. There are certain applications where very high jet velocities cannot be used because of limitations of noise and presence of delicate components. This process can further be improved by pulsating the jet. A steady jet often stabilizes the boundary layer on the surface to be cooled. Enhancement in the convective heat transfer can be achieved if the boundary layer is broken. Disruptions in the boundary layer can be caused by pulsating the impinging jet, i.e., making the jet unsteady. Besides, the pulsations lead to chaotic mixing, i.e., the fluid particles no more follow well defined streamlines but move unpredictably through the stagnation region. Thus the flow mimics turbulence at low Reynolds number. The pulsation should be done in such a way that the boundary layer can be disturbed periodically and yet adequate coolant is made available. So, that there is not much variation in temperature during one pulse cycle. From previous literature it was found that square waveform is most effective in enhancing heat transfer. In the present study the combined effect of pin-finned heat sink and impinging slot jet, both steady and unsteady, has been investigated for both laminar and turbulent flows. The effect of fin height and height of impingement has been studied. The jets have been pulsated in square waveform to study the effect of frequency and duty cycle. This thesis attempts to increase our understanding of the slot jet impingement on pin-finned heat sinks through numerical investigations. A systematic study is carried out using the finite-volume code FLUENT (Version 6.2) to solve the thermal and flow fields. The standard k-ε model for turbulence equations and two layer zonal model in wall function are used in the problem Pressure-velocity coupling is handled using the SIMPLE algorithm with a staggered grid. The parameters that affect the heat transfer coefficient are: height of the fins, total height of impingement, jet exit Reynolds number, frequency of the jet and duty cycle (percentage time the jet is flowing during one complete cycle of the pulse). From the studies carried out it was found that: a) beyond a certain height of the fin the rate of enhancement of heat transfer becomes very low with further increase in height, b) the heat transfer enhancement is much more sensitive to any changes at low Reynolds number than compared to high Reynolds number, c) for a given total height of impingement the use of fins and pulsated jet, increases the effective heat transfer coefficient by almost 200% for the same average Reynolds number, d) for all the cases it was observed that the optimum frequency of impingement is around 50 − 100 Hz and optimum duty cycle around 25-33.33%, e) in the case of turbulent jets the enhancement in heat transfer due to pulsations is very less compared to the enhancement in case of laminar jets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We address the problem of estimating the fundamental frequency of voiced speech. We present a novel solution motivated by the importance of amplitude modulation in sound processing and speech perception. The new algorithm is based on a cumulative spectrum computed from the temporal envelope of various subbands. We provide theoretical analysis to derive the new pitch estimator based on the temporal envelope of the bandpass speech signal. We report extensive experimental performance for synthetic as well as natural vowels for both realworld noisy and noise-free data. Experimental results show that the new technique performs accurate pitch estimation and is robust to noise. We also show that the technique is superior to the autocorrelation technique for pitch estimation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Boundary layer transition induced by the wake of a circular cylinder in the free stream has been investigated using the particle image velocimetry technique. Some differences between simulation and experimental studies have been reported in the literature, and these have motivated the present study. The appearance of spanwise vortices in the early stage is further confirmed here. Lambda spanwise vortex appears to evolve into a Lambda/hairpin vortex; the flow statistics also confirm such vortices. With increasing Reynolds number, based on the cylinder diameter, and with decreasing cylinder height from the plate, the physical size of these hairpin-like structures is found to decrease. Some mean flow characteristics, including the streamwise growth of the disturbance energy, in a wake-induced transition resemble those in bypass transition induced by free stream turbulence. Streamwise velocity streaks that are eventually generated in the late stage often undergo sinuous-type oscillations. Similar to other transitional flows, an inclined shear layer in the wall-normal plane is often seen to oscillate and shed vortices. The normalized shedding frequency of these vortices, estimated from the spatial spacing and the convection velocity of these vortices, is found to be independent of the Reynolds number, similar to that in ribbon-induced transition. Although the nature of free stream disturbance in a wake-induced transition and that in a bypass transition are different, the late-stage features including the flow breakdown characteristics of these two transitions appear to be similar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pulsed-laser ablation technique has been employed to deposit polycrystalline thin films of layered-structure ferroelectric BaBi2Nb2O9 (BBN). Low-substrate-temperature growth (Ts = 400 °C) followed by ex situ annealing at 800 °C for 30 min was performed to obtain a preferred orientation. Ferroelectricity in the films was verified by examining the polarization with the applied electric field and was also confirmed from the capacitance–voltage characteristics. The films exhibited well-defined hysteresis loops, and the values of saturation (Ps) and remanent (Pr) polarization were 4.0 and 1.2 μC/cm2, respectively. The room-temperature dielectric constant and dissipation factor were 214 and 0.04, respectively, at a frequency of 100 kHz. A phase transition from a ferroelectric to paraelectric state of the BBN thin film was observed at 220 °C. The dissipation factor of the film was observed to increase after the phase transition due to a probable influence of dc conduction at high temperatures. The real and imaginary part of the dielectric constant also exhibited strong frequency dispersion at high temperatures.