984 resultados para freeze-thaw cycle
Resumo:
The Sun's open magnetic field, magnetic flux dragged out into the heliosphere by the solar wind, varies by approximately a factor of 2 over the solar cycle. We consider the evolution of open solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate dependent on the rate of photospheric flux emergence, which can be roughly parameterized by sunspot number or coronal mass ejection rate, when available. The open solar flux loss term is more difficult to relate to an observable parameter. The supersonic nature of the solar wind means open solar flux can only be removed by near-Sun magnetic reconnection between open solar magnetic field lines, be they open or closed heliospheric field lines. In this study we reconstruct open solar flux over the last three solar cycles and demonstrate that the loss term may be related to the degree to which the heliospheric current sheet (HCS) is warped, i.e., locally tilted from the solar rotation direction. This can account for both the large dip in open solar flux at the time of sunspot maximum as well as the asymmetry in open solar flux during the rising and declining phases of the solar cycle. The observed cycle-to-cycle variability is also well matched. Following Sheeley et al. (2001), we attribute modulation of open solar flux by the degree of warp of the HCS to the rate at which opposite polarity open solar flux is brought together by differential rotation.
Resumo:
We have examined the atmospheric water cycle of both Polar Regions, pole wards of 60°N and 60°S, using the ERA-Interim re-analysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario, representative of the last three decades of the 21st century. The annual precipitation in ERA-Interim amounts to ~17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is some 8000 km3 but some 3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20 and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22% respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius-Clapeyron relation. There is 2 a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4-6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact the transport is calculated from instantaneous 6-hourly data while precipitation and evaporation is accumulated over a 6 hour period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.
Resumo:
This paper examines the significance of widely used leading indicators of the UK economy for predicting the cyclical pattern of commercial real estate performance. The analysis uses monthly capital value data for UK industrials, offices and retail from the Investment Property Databank (IPD). Prospective economic indicators are drawn from three sources namely, the series used by the US Conference Board to construct their UK leading indicator and the series deployed by two private organisations, Lombard Street Research and NTC Research, to predict UK economic activity. We first identify turning points in the capital value series adopting techniques employed in the classical business cycle literature. We then estimate probit models using the leading economic indicators as independent variables and forecast the probability of different phases of capital values, that is, periods of declining and rising capital values. The forecast performance of the models is tested and found to be satisfactory. The predictability of lasting directional changes in property performance represents a useful tool for real estate investment decision-making.
Resumo:
Acquiring a mechanistic understanding of the role of the biotic feedbacks on the links between atmospheric CO2 concentrations and temperature is essential for trustworthy climate predictions. Currently, computer based simulations are the only available tool to estimate the global impact of the biotic feedbacks on future atmospheric CO2 and temperatures. Here we propose an alternative and complementary approaches by using materially closed and energetically open analogue/physical models of the carbon cycle. We argue that there is potential in using a materially closed approach to improve our understanding of the magnitude and sign of many biotic feedbacks, and that recent technological advance make this feasible. We also suggest how such systems could be designed and discuss the advantages and limitations of establishing physical models of the global carbon cycle.
Resumo:
Colon cancer is a leading and expanding cause of death worldwide. A major contributory factor to this disease is diet composition; some components are beneficial (e.g. dietary fibre) whilst others are detrimental (e.g. alcohol). Garlic oil is a prominent dietary constituent that prevents the development of colorectal cancer. This effect is believed to be mainly due to diallyl disulphide (DADS), which selectively induces redox stress in cancerous (rather than normal) cells which leads to apoptotic cell death. However, the detailed mechanism by which DADS causes apoptosis remains unclear. We show that DADS-treatment of colonic adenocarcinoma cells (HT-29) initiates a cascade of molecular events characteristic of apoptosis. These include a decrease in cellular proliferation, translocation of phosphatidylserine to the plasma-membrane outer-layer, activation of caspase-3, genomic-DNA fragmentation and G2/M phase cell-cycle arrest. Short-chain fatty acids (SCFAs), particularly butyrate (abundantly produced in the gut by bacterial fermentation of dietary polysaccharides), enhance colonic cell integrity but, in contrast, inhibit colonic-cancer cell growth. Combining DADS with butyrate augmented the effect of butyrate on HT-29 cells. These results suggest that the anti-cancerous properties of DADS afford greater benefit when supplied with other favourable dietary factors (SCFA/polysaccharides) that likewise reduce colonic tumour development.
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.
Resumo:
The recent solar minimum was the longest and deepest of the space age, with the lowest average sunspot numbers for nearly a century. The Sun appears to be exiting a grand solar maximum (GSM) of activity which has persisted throughout the space age, and is headed into a significantly quieter period. Indeed, initial observations of solar cycle 24 (SC24) continue to show a relatively low heliospheric magnetic field strength and sunspot number (R), despite the average latitude of sunspots and the inclination of the heliospheric current sheet showing the rise to solar maximum is well underway. We extrapolate the available SC24 observations forward in time by assuming R will continue to follow a similar form to previous cycles, despite the end of the GSM, and predict a very weak cycle 24, with R peaking at ∼65–75 around the middle/end of 2012. Similarly, we estimate the heliospheric magnetic field strength will peak around 6nT. We estimate that average galactic cosmic ray fluxes above 1GV rigidity will be ∼10% higher in SC24 than SC23 and that the probability of a large SEP event during this cycle is 0.8, compared to 0.5 for SC23. Comparison of the SC24 R estimates with previous ends of GSMs inferred from 9300 years of cosmogenic isotope data places the current evolution of the Sun and heliosphere in the lowest 5% of cases, suggesting Maunder Minimum conditions are likely within the next 40 years.
Resumo:
Global temperatures are expected to rise by between 1.1 and 6.4oC this century, depending, to a large extent, on the amount of carbon we emit to the atmosphere from now onwards. This warming is expected to have very negative effects on many peoples and ecosystems and, therefore, minimising our carbon emissions is a priority. Buildings are estimated to be responsible for around 50% of carbon emissions in the UK. Potential reductions involve both operational emissions, produced during use, and embodied emissions, produced during manufacture of materials and components, and during construction, refurbishments and demolition. To date the major effort has focused on reducing the, apparently, larger operational element, which is more readily quantifiable and reduction measures are relatively straightforward to identify and implement. Various studies have compared the magnitude of embodied and operational emissions, but have shown considerable variation in the relative values. This illustrates the difficulties in quantifying embodied, as it requires a detailed knowledge of the processes involved in the different life cycle phases, and requires the use of consistent system boundaries. However, other studies have established the interaction between operational and embodied, which demonstrates the importance of considering both elements together in order to maximise potential reductions. This is borne out in statements from both the Intergovernmental Panel on Climate Change and The Low Carbon Construction Innovation and Growth Team of the UK Government. In terms of meeting the 2020 and 2050 timeframes for carbon reductions it appears to be equally, if not more, important to consider early embodied carbon reductions, rather than just future operational reductions. Future decarbonisation of energy supply and more efficient lighting and M&E equipment installed in future refits is likely to significantly reduce operational emissions, lending further weight to this argument. A method of discounting to evaluate the present value of future carbon emissions would allow more realistic comparisons to be made on the relative importance of the embodied and operational elements. This paper describes the results of case studies on carbon emissions over the whole lifecycle of three buildings in the UK, compares four available software packages for determining embodied carbon and suggests a method of carbon discounting to obtain present values for future emissions. These form the initial stages of a research project aimed at producing information on embodied carbon for different types of building, components and forms of construction, in a simplified form, which can be readily used by building designers in optimising building design in terms of minimising overall carbon emissions. Keywords: Embodied carbon; carbon emission; building; operational carbon.
Resumo:
This account summarizes recent work by us and others on the development of ligands for the separation of actinides from lanthanides contained in nuclear waste streams in the context of a future European strategy for nuclear waste management. The current status of actinide/lanthanide separations worldwide is briefly discussed, and the synthesis, development, and testing of different classes of heterocyclic soft N- and S-donor ligands in Europe over the last 20 years is presented. This work has led to the current benchmark ligand that displays many of the desirable qualities for industrial use. The improvement of radiolytic stability through ligand design is also discussed.
Resumo:
A global archive of high-resolution (3-hourly, 0.58 latitude–longitude grid) window (11–12 mm) brightness temperature (Tb) data from multiple satellites is being developed by the European Union Cloud Archive User Service (CLAUS) project. It has been used to construct a climatology of the diurnal cycle in convection, cloudiness, and surface temperature for all regions of the Tropics. An example of the application of the climatology to the evaluation of the climate version of the U.K. Met. Office Unified Model (UM), version HadAM3, is presented. The characteristics of the diurnal cycle described by the CLAUS data agree with previous observational studies, demonstrating the universality of the characteristics of the diurnal cycle for land versus ocean, clear sky versus convective regimes. It is shown that oceanic deep convection tends to reach its maximum in the early morning. Continental convection generally peaks in the evening, although there are interesting regional variations, indicative of the effects of complex land–sea and mountain–valley breezes, as well as the life cycle of mesoscale convective systems. A striking result from the analysis of the CLAUS data has been the extent to which the strong diurnal signal over land is spread out over the adjacent oceans, probably through gravity waves of varying depths. These coherent signals can be seen for several hundred kilometers and in some instances, such as over the Bay of Bengal, can lead to substantial diurnal variations in convection and precipitation. The example of the use of the CLAUS data in the evaluation of the Met. Office UM has demonstrated that the model has considerable difficulty in capturing the observed phase of the diurnal cycle in convection, which suggests some fundamental difficulties in the model’s physical parameterizations. Analysis of the diurnal cycle represents a powerful tool for identifying and correcting model deficiencies.
Resumo:
A partial differential equation model is developed to understand the effect that nutrient and acidosis have on the distribution of proliferating and quiescent cells and dead cell material (necrotic and apopotic) within a multicellular tumour spheroid. The rates of cell quiescence and necrosis depend upon the local nutrient and acid concentrations and quiescent cells are assumed to consume less nutrient and produce less acid than proliferating cells. Analysis of the differences in nutrient consumption and acid production by quiescent and proliferating cells shows low nutrient levels do not necessarily lead to increased acid concentration via anaerobic metabolism. Rather, it is the balance between proliferating and quiescent cells within the tumour which is important; decreased nutrient levels lead to more quiescent cells, which produce less acid than proliferating cells. We examine this effect via a sensitivity analysis which also includes a quantification of the effect that nutrient and acid concentrations have on the rates of cell quiescence and necrosis.