965 resultados para fluorescence probe technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the naked-eye detection of cyanide ions in water with a visual color change from red to yellow ((max)=80nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for in-field experiments without requiring any sophisticated instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the universal conductance fluctuations (UCF) can be used as a direct probe to study the valley quantum states in disordered graphene. The UCF magnitude in graphene is suppressed by a factor of four at high carrier densities where the short-range disorder essentially breaks the valley degeneracy of the K and K' valleys, leading to a density dependent crossover of symmetry class from symplectic near the Dirac point to orthogonal at high densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real world biological systems such as the human brain are inherently nonlinear and difficult to model. However, most of the previous studies have either employed linear models or parametric nonlinear models for investigating brain function. In this paper, a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study connectivity in the brain has been proposed. Being non-parametric, this method makes very few assumptions, making it suitable for investigating brain function in a data-driven way. CPR's utility with application to multichannel electroencephalographic (EEG) signals has been demonstrated. Brain connectivity obtained using thresholded CPR matrix of multichannel EEG signals showed clear differences in the number and pattern of connections in brain connectivity between (a) epileptic seizure and pre-seizure and (b) eyes open and eyes closed states. Corresponding brain headmaps provide meaningful insights about synchronization in the brain in those states. K-means clustering of connectivity parameters of CPR and linear correlation obtained from global epileptic seizure and pre-seizure showed significantly larger cluster centroid distances for CPR as opposed to linear correlation, thereby demonstrating the superior ability of CPR for discriminating seizure from pre-seizure. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landslide hazards are a major natural disaster that affects most of the hilly regions around the world. In India, significant damages due to earthquake induced landslides have been reported in the Himalayan region and also in the Western Ghat region. Thus there is a requirement of a quantitative macro-level landslide hazard assessment within the Indian subcontinent in order to identify the regions with high hazard. In the present study, the seismic landslide hazard for the entire state of Karnataka, India was assessed using topographic slope map, derived from the Digital Elevation Model (DEM) data. The available ASTER DEM data, resampled to 50 m resolution, was used for deriving the slope map of the entire state. Considering linear source model, deterministic seismic hazard analysis was carried out to estimate peak horizontal acceleration (PHA) at bedrock, for each of the grid points having terrain angle 10A degrees and above. The surface level PHA was estimated using nonlinear site amplification technique, considering B-type NEHRP site class. Based on the surface level PHA and slope angle, the seismic landslide hazard for each grid point was estimated in terms of the static factor of safety required to resist landslide, using Newmark's analysis. The analysis was carried out at the district level and the landslide hazard map for all the districts in the Karnataka state was developed first. These were then merged together to obtain a quantitative seismic landslide hazard map of the entire state of Karnataka. Spatial variations in the landslide hazard for all districts as well as for the entire state Karnataka is presented in this paper. The present study shows that the Western Ghat region of the Karnataka state is found to have high landslide hazard where the static factor of safety required to resist landslide is very high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the performance and photophysics of a low band-gap diketopyrrolopyrrole-based copolymer used in bulk heterojunction devices in combination with PC71BM. We show that the short lifetime of photogenerated excitons in the polymer constitutes an obstacle towards device efficiency by limiting the diffusion range of the exciton to the donor-acceptor heterojunction. We employ ultrafast transient-probe and fluorescence spectroscopy techniques to examine the excited state loss channels inside the devices. We use the high boiling point solvent additive 1,8-diiodooctane (DIO) to study the photoexcited state losses in different blend morphologies. The solvent additive acts as a compatibiliser between the donor and the acceptor material and leads to smaller domain sizes, higher charge formation yields and increased device efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dinuclear cadmium(II) complex, Cd(L)(NCS)](2) (1) has been synthesized using a potentially tetradentate Schiff base ligand HL, 2-((E)-(2-(diethylamino) ethylimino) methyl)-6-methoxyphenol, obtained by the condensation of 2-diethylaminoethylamine and o-vanillin, and characterized by different physicochemical techniques. Crystal structure of the title complex was unambiguously established by single crystal X-ray diffraction which reveals that metal centers are connected by bridging phenolato and chelating methoxy oxygen atoms of the coordinating Schiff bases and embedded in severely distorted octahedral geometries. Fluorescence properties of the ligand and its complex, studied at room temperature indicate that later may serve as strong fluorescent

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution combustion synthesis technique was adopted to synthesize V2O5, and Mo doped phases, The as-synthesized V2O5, has been reduced by a novel reduction technique to form VO2 typephase. The monophasic nature of the samples as revealed by XRD data and systematic shift in peak position indicated solid solubility up to 2 at % of Mo in VO2 lattice. The crystallite size was found to similar to 40 nm. Particle size measurement carried out using Transmission electron microscope ( TEM) agreed with XRD experiments. Scanning electron microscope revealed the morphology of the particles to be plate like and bimodal. Variation in the metal- insulator transition temperature as a function of doping was investigated by 4-probe electrical resistivity measurement on sintered ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose FeatureMatch, a generalised approximate nearest-neighbour field (ANNF) computation framework, between a source and target image. The proposed algorithm can estimate ANNF maps between any image pairs, not necessarily related. This generalisation is achieved through appropriate spatial-range transforms. To compute ANNF maps, global colour adaptation is applied as a range transform on the source image. Image patches from the pair of images are approximated using low-dimensional features, which are used along with KD-tree to estimate the ANNF map. This ANNF map is further improved based on image coherency and spatial transforms. The proposed generalisation, enables us to handle a wider range of vision applications, which have not been tackled using the ANNF framework. We illustrate two such applications namely: 1) optic disk detection and 2) super resolution. The first application deals with medical imaging, where we locate optic disks in retinal images using a healthy optic disk image as common target image. The second application deals with super resolution of synthetic images using a common source image as dictionary. We make use of ANNF mappings in both these applications and show experimentally that our proposed approaches are faster and accurate, compared with the state-of-the-art techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several time dependent fluorescence Stokes shift (TDFSS) experiments have reported a slow power law decay in the hydration dynamics of a DNA molecule. Such a power law has neither been observed in computer simulations nor in some other TDFSS experiments. Here we observe that a slow decay may originate from collective ion contribution because in experiments DNA is immersed in a buffer solution, and also from groove bound water and lastly from DNA dynamics itself. In this work we first express the solvation time correlation function in terms of dynamic structure factors of the solution. We use mode coupling theory to calculate analytically the time dependence of collective ionic contribution. A power law decay in seen to originate from an interplay between long-range probe-ion direct correlation function and ion-ion dynamic structure factor. Although the power law decay is reminiscent of Debye-Falkenhagen effect, yet solvation dynamics is dominated by ion atmosphere relaxation times at longer length scales (small wave number) than in electrolyte friction. We further discuss why this power law may not originate from water motions which have been computed by molecular dynamics simulations. Finally, we propose several experiments to check the prediction of the present theoretical work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current methods for molecular simulations of Electric Double Layer Capacitors (EDLC) have both the electrodes and the electrolyte region in a single simulation box. This necessitates simulation of the electrode-electrolyte region interface. Typical capacitors have macroscopic dimensions where the fraction of the molecules at the electrode-electrolyte region interface is very low. Hence, large systems sizes are needed to minimize the electrode-electrolyte region interfacial effects. To overcome these problems, a new technique based on the Gibbs Ensemble is proposed for simulation of an EDLC. In the proposed technique, each electrode is simulated in a separate simulation box. Application of periodic boundary conditions eliminates the interfacial effects. This in addition to the use of constant voltage ensemble allows for a more convenient comparison of simulation results with experimental measurements on typical EDLCs. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lime stabilization prevails to be the most widely adopted in situ stabilization method for controlling the swell-shrink potentials of expansive soils despite construction difficulties and its ineffectiveness in certain conditions. In addition to the in situ stabilization methods presently practiced, it is theoretically possible to facilitate in situ precipitation of lime in soil by successive permeation of calcium chloride (CaCl2 ) and sodium hydroxide (NaOH) solutions into the expansive soil. In this laboratory investigation, an attempt is made to study the precipitation of lime in soil by successive mixing of CaCl2 and NaOH solutions with the expansive soil in two different sequences.Experimental results indicated that in situ precipitation of lime in soil by sequential mixing of CaCl2 and NaOH solutions with expansive soil developed strong lime-modification and soil-lime pozzolanic reactions. The lime-modification reactions together with the poorly de- veloped cementation products controlled the swelling potential, reduced the plasticity index, and increased the unconfined compressive strength of the expansive clay cured for 24 h. Comparatively, both lime-modification reactions and well-developed crystalline cementation products (formed by lime-soil pozzolanic reactions) contributed to the marked increase in the unconfined compressive strength of the ex-pansive soil that was cured for 7–21 days. Results also show that the sequential mixing of expansive soil with CaCl2 solution followed by NaOH solution is more effective than mixing expansive soil with NaOH solution followed by CaCl2 solution. DOI: 10.1061/(ASCE)MT .1943-5533.0000483. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage Source Inverter (VSI) fed induction motors are widely used in variable speed applications. For inverters using fixed switching frequency PWM, the output harmonic spectra are located at a few discrete frequencies. The ac motordrives powered by these inverters cause acoustic noise. This paper proposes a new variable switching frequency pwm technique and compares its performance with constant switching frequency pwm technique. It is shown that the proposed technique leads to spread spectra of voltages and currents. Also this technique ensures that no lower order harmonics are present and the current THD is comparable to that of fixed switching frequency PWM and is even better for higher modulation indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this investigation transparent conducting properties of as-deposited and annealed ZnO:Sn:F films deposited using different spray flux density by changing the solvent volume (10 mL, 20 mL ... 50 mL) of the starting solutions have been studied and reported. The structural analyses of the films indicate that all the films have hexagonal wurtzite structure of ZnO with preferential orientation along (002) plane irrespective of the solvent volume and annealing treatment whereas, the overall crystalline quality of the films is found to be enhanced with the increase in solvent volume as well as with annealing. This observed enhancement is strongly supported by the optical and surface morphological results. From the measurements of electrical parameters, it is seen that, the annealed films exhibit better electrical properties compared to the as-deposited ones. Annealing has caused agglomeration of grains as confirmed by the surface morphological studies. Also, the annealing process has led to an improvement in the optical transparency as well as band gap. It is found from the analyses of the characteristics of the as- deposited and annealed films that the annealed film deposited from starting solution having solvent volume of 50 mL is optimal in all respects, as it possesses all the desirable characteristics including the quality factor (1.60 x 10(-4) (Omega/sq.)(-1)). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new 2-(2-aminophenyl)benzimidazole-based HSO4- ion selective receptors, 6-(4-nitrophenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c]quinazoline (L1H) and 6-(4-methoxyphenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c] quinazoline (L2H), and their 1 : 1 molecular complexes with HSO4- were prepared in a facile synthetic method and characterized by physicochemical and spectroscopic techniques along with the detailed structural analysis of L1H by single crystal X-ray crystallography. Both receptors (L1H and L2H) behave as highly selective chemosensor for HSO4- ions at biological pH in ethanol-water HEPES buffer (1/5) (v/v) medium over other anions such as F-, Cl-, Br-, I-, AcO-, H2PO4-, N-3(-) and ClO4-. Theoretical and experimental studies showed that the emission efficiency of the receptors (L1H and L2H) was tuned successfully through single point to ratiometric detection by employing the substituent effects. Using 3 sigma method the LOD for HSO4- ions were found to be 18.08 nM and 14.11 nM for L1H and L2H, respectively, within a very short responsive time (15-20 s) in 100 mM HEPES buffer (ethanol-water: 1/5, v/v). Comparison of the utility of the probes (L1H and L2H) as biomarkers for the detection of intracellular HSO4- ions concentrations under a fluorescence microscope has also been included and both probes showed no cytotoxic effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative use of satellite-derived rainfall products for various scientific applications often requires them to be accompanied with an error estimate. Rainfall estimates inferred from low earth orbiting satellites like the Tropical Rainfall Measuring Mission (TRMM) will be subjected to sampling errors of nonnegligible proportions owing to the narrow swath of satellite sensors coupled with a lack of continuous coverage due to infrequent satellite visits. The authors investigate sampling uncertainty of seasonal rainfall estimates from the active sensor of TRMM, namely, Precipitation Radar (PR), based on 11 years of PR 2A25 data product over the Indian subcontinent. In this paper, a statistical bootstrap technique is investigated to estimate the relative sampling errors using the PR data themselves. Results verify power law scaling characteristics of relative sampling errors with respect to space-time scale of measurement. Sampling uncertainty estimates for mean seasonal rainfall were found to exhibit seasonal variations. To give a practical example of the implications of the bootstrap technique, PR relative sampling errors over a subtropical river basin of Mahanadi, India, are examined. Results reveal that the bootstrap technique incurs relative sampling errors < 33% (for the 2 degrees grid), < 36% (for the 1 degrees grid), < 45% (for the 0.5 degrees grid), and < 57% (for the 0.25 degrees grid). With respect to rainfall type, overall sampling uncertainty was found to be dominated by sampling uncertainty due to stratiform rainfall over the basin. The study compares resulting error estimates to those obtained from latin hypercube sampling. Based on this study, the authors conclude that the bootstrap approach can be successfully used for ascertaining relative sampling errors offered by TRMM-like satellites over gauged or ungauged basins lacking in situ validation data. This technique has wider implications for decision making before incorporating microwave orbital data products in basin-scale hydrologic modeling.