948 resultados para fertilization placements


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oocyte developmental competence depends on maternal stores that support development throughout a transcriptionally silent period during early embryogenesis. Previous attempts to investigate transcripts associated with oocyte competence have relied on prospective models, which are mostly based on morphological. criteria. Using a retrospective model, we quantitatively compared mRNA among oocytes with different embryo development competence. A cytoplasm biopsy was removed from in vitro matured oocytes to perform comparative analysis of amounts of global polyadenylated (polyA) mRNA and housekeeping gene transcripts. After parthenogenetic activation of biopsied oocytes, presumptive zygotes were cultured individually in vitro and oocytes were classified according to embryo development: (i) blocked before the 8-cell stage; (ii) blocked between the 8-cell and morulae stages; or (iii) developed to the blastocyst stage. Sham-manipulated controls confirmed that biopsies did not alter development outcome. Total polyA mRNA amounts correlate with oocyte diameter but not with the ability to develop to the 8-cell and blastocyst stages. The last was also confirmed by relative quantification of GAPDH, H2A and Hprt1 transcripts. In conclusion, we describe a novel retrospective model to identify putative markers of development competence in single oocytes and demonstrate that global mRNA amounts at the metaphase II stage do not correlate with embryo development in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oocyte maturation is a long process during which oocytes acquire their intrinsic ability to support the subsequent stages of development in a stepwise manner, ultimately reaching activation of the embryonic genome. This process involves complex and distinct, although linked, events of nuclear and cytoplasmic maturation. Nuclear maturation mainly involves chromosomal segregation, whereas cytoplasmic maturation involves organelle reorganization and storage of mRNAs, proteins and transcription factors that act in the overall maturation process, fertilization and early embryogenesis. Thus, for didactic purposes, we subdivided cytoplasmic maturation into: (1) organelle redistribution, (2) cytoskeleton dynamics, and (3) molecular maturation. Ultrastructural analysis has shown that mitochondria, ribosomes, endoplasmic reticulum, cortical granules and the Golgi complex assume different positions during the transition from the germinal vesicle stage to metaphase II. The cytoskeletal microfilaments and microtubules present in the cytoplasm promote these movements and act on chromosome segregation. Molecular maturation consists of transcription, storage and processing of maternal mRNA, which is stored in a stable, inactive form until translational recruitment. Polyadenylation is the main mechanism that initiates protein translation and consists of the addition of adenosine residues to the 3` terminal portion of mRNA. Cell cycle regulators, proteins, cytoplasmic maturation markers and components of the enzymatic antioxidant system are mainly transcribed during this stage. Thus, the objective of this review is to focus on the cytoplasmic maturation process by analyzing the modifications in this compartment during the acquisition of meiotic competence for development. (c) 2009 Elsevier Inc. All rights reserved.