981 resultados para fenolo alchilazione MgO MgAlO carbonati organici


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accumulation of organic matter, ferrous and pyrite iron, and the ratios of organic carbon/total sulfur and organic carbon/total phosphorus in the Lower Cretaceous sediments from the Argo and Gascoyne abyssal plains have been used as indicators of both the source and reactivity of organic matter in the sediments and the depositional environment. Total sulfur, used as an indicator of pyrite sulfur, is more abundant in sediments from the Gascoyne Abyssal Plain than in those from the Argo Abyssal Plain. Sulfur positively correlates with TOC at both sites (although poorly at the Argo Abyssal Plain site, R = 0.48), with an extension of the line of best-fit through the origin, indicating that pyrite (TOC <2 wt%) is diagenetic and deposited from normal marine conditions. The average ratio of C/S for samples of TOC <2 wt% is 5.4 at Argo Abyssal Plain (compared to the modern normal marine value of 2.8) indicating deposition of organic matter probably of mixed terrestrial and oxidized marine sources that is unreactive to the sulfate-reducing bacteria. One sample from the Aptian sediments is rich in TOC (5.1 wt%) and has a C/S ratio of 0.5. The average C/S ratio in Gascoyne Abyssal Plain sediments is 0.8 (R = 0.97), which indicates the formation of abundant pyrite in addition to burial and preservation of relatively fresh organic matter that is reactive to the sulfate-reducing bacteria. Organic carbon to phosphorus ratios (C/P) in the sediments indicate preferential remobilization of organic carbon over phosphorus with increasing water depth. Estimates of the degree of pyritization (DOP) increase with increasing TOC at both sites, indicating iron is not limiting and pyrite is formed diagenetically. The one sample with a TOC content of 5.1 wt%, from the Argo Abyssal Plain near the Barremian-Aptian boundary, is composed mostly of framboidal pyrite, finely laminated and not bioturbated, and hence may have been deposited during a brief period of anoxia in the overlying waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Early Cretaceous basaltic rocks obtained from Sites 765 and 766 in the eastern Indian Ocean floor were mostly iron-rich normal mid-ocean ridge basalts (N-MORB), which were derived from a depleted mantle source having strongly light rare earth element (LREE)-depleted rare-earth patterns and a high titanium/zirconium (Ti/Zr) ratio. Basaltic rocks in the upper part of the Site 765 basement section include megacrysts and gabbroic fragments of widely varying mineral chemistry. These megacrysts range from An90 plagioclase, including highly magnesian basaltic glass coexisting with augite of Mg# (= 100 Mg/[Fe+Mg]) at 85, to An50 plagioclase coexisting with hypersthene. This varying mineralogy of megacrysts and gabbroic fragments indicates that a considerable degree of fractional crystallization took place in the magma chamber. The unusual negative correlation between incompatible elements (e.g., TiO2) and FeO*/MgO observed among Site 765 basement basalts and fresh volcanic glasses suggest source-mantle heterogeneity in terms of FeO*/MgO. Strontium isotope ratios (87Sr/86Sr) of the basaltic rocks from both sites are between 0.7027 and 0.7033 and are comparable to those of mid-Indian Ocean ridge basalts (MIORB). The basalt pebbles encountered in the sedimentary section may have been transported from the basement highs nearer the Australian continent and include basaltic compositions ranging from primitive N-MORBs to evolved enriched (E)-MORBs. Their mantle source was not as depleted as that of the basement basalts. These rocks may be the products of earlier volcanism that took place during the rifting of the Australian continent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of petrographic and mineral compositions of 26 sediment cores from the western part of the Central Basin of the Indian Ocean has identified biogenic, terrigenous, volcanogenic, and authigenic sediment types formed in certain facies conditions. On the basis of bio- and paleomagnetic stratigraphy data from the cores sedimentation rates of different sediment types have been calculated. Modern and Pliocene-Pleistocene positions of the main facies boundaries (the critical depth of carbonate accumulation, the geochemical boundary between hemi- and miopelagic zones, the frontal boundaries of the equatorial belt of biogenic silica accumulation) have been determined. It has been shown that the sedimentary process during Pliocene-Quaternary had cycle variations characterized by successive changes of different sedimentation types - hemipelagic, miopelagic, and biogenic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower Miocene basaltic glass spherules from DSDP Site 32 pelagic sediments in the eastern Pacific are compositionally diverse, and new analyses and interpretations have been added to those of earlier workers. The spherules are of titanian ferrobasalt which is compositionally similar to highly evolved abyssal basalts and to some oceanic island eruptives, and they were most likely shaped during intense lava fountaining during a number of separate eruptions. These eruptions tapped distinct but related magma batches in terms, for example, of distinctively high TiO2 and FeO* contents. Their age overlaps that of some of the eruptions of the Columbia River Plateau Basalts, but they are compositionally distinct from most of the latter basalts. Although about 15 m.y. old, they show little alteration. The low chlorine and sulfur contents compared to those of abyssal ferrobasalts are consistent with degassing prior to quenching during subaerial eruptions, and rule out production of the spherules by submarine fountaining. Lava fountaining alone is insufficient to account for the distance of about 100 km from even the closest possible seamount source. Instead, large phreatomagmatic eruption columns reaching at least 15 km and including lava fountaining immediately after the initial explosion are required. Alternatively, and deemed less likely, is their deposition by turbidites derived from Pioneer Seamount.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of comprehensive geological, geophysical and geochemical studies carried out in the Cape Verde Fracture Zone (Central Atlantic) during Cruise 9 of R/V ''Antares'' (1990-1991) are published in the book. Detailed characterization of various bedrock complexes (ultrabasites, gabbroids, dolerites, basalts, metamorphic rocks) is given. Geological conditions of newly found hydrothermal mineralization in the area are described. Problems of ore melts are under consideration. New data on hydrochemical anomalies and heat flow are given. The book contains original materials on sedimentary formations of the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous dihydrogen (H2,aq) is produced in copious amounts when seawater interacts with peridotite and H2O oxidizes ferrous iron in olivine to ferric iron in secondary magnetite and serpentine. Poorly understood in this process is the partitioning of iron and its oxidation state in serpentine, although both impose an important control on dihydrogen production. We present results of detailed petrographic, mineral chemical, magnetic and Mößbauer analyses of partially to fully serpentinized peridotites from the Ocean Drilling Program (ODP) Leg 209, Mid-Atlantic Ridge (MAR) 15°N area. These results are used to constrain the fate of iron during serpentinization and are compared with phase equilibria considerations and peridotite-seawater reaction path models. In samples from Hole 1274A, mesh-rims reveal a distinct in-to-out zoning from brucite at the interface with primary olivine, followed by a zone of serpentine + brucite ± magnetite and finally serpentine + magnetite in the outermost mesh-rim. The compositions of coexisting serpentine (Mg# 95) and brucite (Mg# 80) vary little throughout the core. About 30-50% of the iron in serpentine/brucite mesh-rims is trivalent, irrespective of subbasement depth and protolith (harzburgite versus dunite). Model calculations suggest that both partitioning and oxidation state of iron are very sensitive to temperature and water-to-rock ratio during serpentinization. At temperatures above 330 °C the dissolution of olivine and coeval formation of serpentine, magnetite and dihydrogen depends on the availability of an external silica source. At these temperatures the extent of olivine serpentinization is insufficient to produce much hydrogen, hence conditions are not reducing enough to form awaruite. At T < 330 °C, hydrogen generation is facilitated by the formation of brucite, as dissolution of olivine to form serpentine, magnetite and brucite requires no addition of silica. The model calculations suggest that the iron distribution observed in serpentine and brucite is consistent with formation temperatures ranging from <150 to 250 °C and bulk water-to-rock ratios between 0.1 and 5. These conditions coincide with peak hydrogen fugacities during serpentinization and are conducive to awaruite formation during main stage serpentinization. The development of the common brucite rims around olivine is either due to an arrested reaction olivine -> brucite -> serpentine + brucite, or reflects metastable olivine-brucite equilibria developing in the strong gradient in silica activity between orthopyroxene (talc-serpentine) and olivine (serpentine-brucite).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Yamato Basin basement in the Sea of Japan was drilled below the sediment pile during Legs 127 and 128. Two superposed volcanic complexes are distinguished. The upper complex consists of continental tholeiite sills dated around 20-18 Ma and attributed to the rifting stage of the backarc basin. The lower complex consists of backarc basin basalts probably intruded below the upper complex during the spreading stage. Trace-element compositions and Sr and Nd isotopic signatures may be explained by mixing of at least two end members with a very small addition of crustal and subducted sediment component. Thus, upwelling of mantle diapir occurred during the rifting stage. Contribution of the depleted mantle increased in the spreading stage. The Neogene magmatic history of the Japan Sea is reviewed in the light of the ODP new data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Site 585 of Deep Sea Drilling Project Leg 89 more than 500 m of volcaniclastic to argillaceous middle-Late Cretaceous sediments were recovered. Analyses by X-ray diffraction (bulk sediment and clay fraction), transmission electron microscopy, molecular and atomic absorption, and electron microprobe were done on Site 585 samples. We identify four successive stages and interpret them as the expression of environments evolving under successive influences: Stage 1, late Aptian to early Albian - subaerial and proximal volcanism, chiefly expressed by the presence of augite, analcite, olivine, celadonite, small and well-shaped transparent trioctahedral saponite, Al hydroxides, Na, Fe, Mg, and various trace elements (Mn, Ni, Cr, Co, Pb, V, Zn, Ti). Stage 2, early to middle Albian - submarine and less proximal volcanic influence, characterized by dioctahedral and hairy Mg-beidellites, a paucity of analcite and pyroxenes, the presence of Mg and K, and local alteration of Mg-smectites to Mg-chlorites. Stage 3, middle Albian to middle Campanian - early marine diagenesis, marked by the development of recrystallization from fleecy smectites to lathed ones (all of alkaline Si-rich Fe-beidellite types), by the development of opal CT and clinoptilolite, and by proximal to distal volcanic influences (Na parallel to Ti, K). Local events consist of the supply of reworked palygorskite during the Albian-Cenomanian, and the recurrence of proximal volcanic activity during the early Campanian. Stage 4, late Campanian to Maestrichtian - development of terrigenous supply resulting from the submersion of topographic barriers; this terrigenous supply is associated with minor diagenetic effects and is marked by a clay diversification (beidellite, illite, kaolinite, palygorskite), the rareness of clay recrystallizations, and the disappearance of volcanic markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic history, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallization at HT conditions; ages scatter from 263-294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A geochemical, mineralogical, and isotopic database comprising 75 analyses of Ocean Drilling Program (ODP) Leg 193 samples has been prepared, representing the variable dacitic volcanic facies and alteration types observed in drill core from the subsurface of the PACMANUS hydrothermal system (Table T1. The data set comprises major elements, trace and rare earth elements (REE), various volatiles (S, F, Cl, S, SO4, CO2, and H2O), and analyses of 18O and 86Sr/87Sr for bulk rock and mineral separates (anhydrite). Furthermore, normative mineral proportions have been calculated based on the results of X-ray diffraction (XRD) analysis (Table T2) using the SOLVER function of the Microsoft Excel program. Several of the samples analyzed consist of mesoscopically distinctive domains, and separate powders were generated to investigate these hand specimen-scale heterogeneities. Images of all the samples are collated in Figure F1, illustrating the location of each powder analyzed and documenting which measurements were performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several distinct, thin (2-7 cm), volcanic sand layers ("ashes") were recovered in the upper portions of Holes 842A and 842B. These holes were drilled 320 km west of the island of Hawaii on the outer side of the arch that surrounds the southern end of the Hawaiian chain. These layers are Pliocene to Pleistocene in age, graded, and contain fresh glass and mineral fragments (mainly olivine, plagioclase, and clinopyroxene) and tests of Pleistocene to Eocene radiolarians. The glass fragments are weakly vesicular and blocky to platy in shape. The glass and olivine fragments from individual layers have large ranges in composition (i.e, larger than expected for a single eruption). These features are inconsistent with an explosive eruption origin for the sands. The only other viable mechanism for transporting these sands hundreds of kilometers from their probable source, the Hawaiian Islands, is turbidity currents. These currents were probably related to several of the giant debris slides that were identified from Gloria sidescan images around the islands. These currents would have run over the ~500-m-high Hawaiian Arch on their way to Site 842. This indicates that the turbidity currents were at least 325 m thick. Paleomagnetic and biostratigraphic data allow the ages of the sands to be constrained and, thus, related to particular Hawaiian debris flows. These correlations were checked by comparing the compositions of the glasses from the sands with those of glasses and rocks from islands with debris flows directed toward Site 842. Good correlations were found for the 110-ka slide from Mauna Loa and the ~1.4-Ma slide from Lanai. The correlation with Kauai is poor, probably because the data base for that volcano is small. The low to moderate sulfur content of the sand glasses indicates that they were derived from moderately to strongly degassed lavas (shallow marine or subaerially erupted), which correlates well with the location of the landslide scars on the flanks of the Hawaiian volcanoes. The glass sands may have been formed by brecciation during the landslide events or spallation and granulation as lava erupted into shallow water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monograph is devoted to the main results of research on the Trans Indian Ocean Geotraverse from the Maskarene Basin to the north-western margin of Australia. These results were obtained by Russian specialists and together with Indian specialists during 15 years of cooperation in investigation of geological structure and mineral resources of the Indian Ocean. The monograph includes materials on information support of marine geological and geophysical studies, composition and structure of information resources on the Indian Ocean, bathymetry and geomorphology, structure and geological nature of the magnetic field, gravity field, plate tectonics, crustal structure and sedimentary cover, seismic stratigraphy, perspectives for detecting oil and gas, solid minerals, sediment composition, composition and properties of clay minerals, stratigraphy and sediment age, chemical composition of sediments, composition of and prospects for solid minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6-90.0 mol.% Fo, 1,722-3,915 ppm Ni, 1,085-1,552 ppm Mn, 1,222-3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr-Nd-Pb isotope compositions (87Sr/86Sr = 0.70315-0.70331, 143Nd/144Nd = 0.51288-0.51292, 206Pb/204Pb = 19.55-19.93, 207Pb/204Pb = 15.60-15.63, 208Pb/204Pb = 39.31-39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al., 2007, Science Vol 316) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al., 2009, doi:10.1016/j.epsl.2008.11.013), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.