999 resultados para förskollärares arbetssituation under lunchmåltiden.
Resumo:
Numerous microcracks propagation in one metal matrix composite, Al/SiCp under impact loading was investigated. The test data was got with a specially designed impact experimental approach. The analysis to the density, nucleating locations and distributions of the microcracks as well as microstructure effects of the original composite was received particular emphasis. The types of microcracks or debonding nucleated in the tested composite were dependent on the stress level and its duration. Distributions of the microcracks were depended on that of microstructures of the tested composite while total number of microcracks in unit area and unit duration, was controlled by the stress levels. Also, why the velocity was much lower than theoretical estimations for elastic solids and why the microcracks propagating velocities increased with the stress levels' increasing in current experiments were analysed and explained.
Resumo:
Ocean-current-induced pipeline stability on sandy seabed was simulated physically in a flow flume. The process of pipeline losing onbottom stability in currents was recorded and analyzed. Experimental data show that, for a pipeline directly laid on sandy seabed, there exists a linear relationship between the dimensionless submerged weight of pipeline and Froude number, in which the current-pipe-soil coupling effects are reflected. The sand-particle size effects on pipeline onbottom stability are further discussed. The new established empirical relationship may provide a guide for the engineering practice of current-induced on-bottom stability design of a submarine pipeline.
Resumo:
Gas film lubrication of a three-dimensional flat read-write head slider is calculated using the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method, respectively. The pressure distributions on the head slider surface at different velocities and flying heights obtained by the two methods are in excellent agreement. IP method is also employed to deal with head slider with three-dimensional complex configuration. The pressure distribution on the head slider surface and the net lifting force obtained by the IP method also agree well with those of DSMC method. Much less (of the order about 10(2) less) computational time (the sum of the time used to reach a steady stage and the time used in sampling process) is needed by the IP method than the DSMC method and such an advantage is more remarkable as the gas velocity decreases.
Resumo:
The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is performed. The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.
Resumo:
The nonlinear dynamic responses of the tensioned tether subjected to combined surge and heave motions of floating platform are investigated using 2-D nonlinear beam model. It is shown that if the transverse-axial coupling of nonlinear beam model and the combined surge-heave motions of platform are considered, the governing equation is not Mathieu equation any more, it becomes nonlinear Hill equation. The Hill stability chart is obtained by using the Hill's infinite determinant and harmonic balance method. A parameter M, which is the function of tether length, the surge and heave amplitude of platform, is defined. The Hill stability chart is obviously different from Mathieu stability chart which is the specific case as M=0. Some case studies are performed by employing linear and nonlinear beam model respectively. It can be found that the results differences between nonlinear and linear model are apparent.
Resumo:
A recoverable plate impact testing technology has been used for studying the growth mechanisms of mode II crack. The results show that interactions of microcracks ahead of a crack tip cause the crack growth unsteadily. Failure mode transitions of materials were observed. Based on the observations, a discontinuous crack growth model was established. Analysis shows that the shear crack grows unsteady as the growth speed is between the Rayleigh wave speed c(R) and the shear wave speed c(s); however, when the growth speed approaches root 2c(s), the crack grows steadily. The transient microcrack growth makes the main crack speed to jump from subsonic to intersonic and the steady growth of all the sub-cracks leads the main crack to grow stably at an intersonic speed.
Resumo:
The microstructural heterogeneity and stress fluctuation play important roles in the failure process of brittle materials. In this paper, a generalized driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. As an illustration, the failure process of cement material under explosive loading is analyzed using the model. The result agrees well with the experimental one, which proves the efficiency of the model.
Resumo:
Dynamics of single curved fiber sedimentation under gravity are simulated by using the lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Global warming of the oceans is expected to alter the environmental conditions that determine the growth of a fishery resource. Most climate change studies are based on models and scenarios that focus on economic growth, or they concentrate on simulating the potential losses or cost to fisheries due to climate change. However, analysis that addresses model optimization problems to better understand of the complex dynamics of climate change and marine ecosystems is still lacking. In this paper a simple algorithm to compute transitional dynamics in order to quantify the effect of climate change on the European sardine fishery is presented. The model results indicate that global warming will not necessarily lead to a monotonic decrease in the expected biomass levels. Our results show that if the resource is exploited optimally then in the short run, increases in the surface temperature of the fishery ground are compatible with higher expected biomass and economic profit.