953 resultados para exome sequencing
Resumo:
Among the molecular markers commonly used for mosquito taxonomy, the internal transcribed spacer 2 (ITS2) of the ribosomal DNA is useful for distinguishing among closely-related species. Here we review 178 GenBank accession numbers matching ITS2 sequences of Latin American anophelines. Among those, we found 105 unique sequences corresponding to 35 species. Overall the ITS2 sequences distinguish anopheline species, however, information on intraspecific and geographic variations is scarce. Intraspecific variations ranged from 0.2% to 19% and our analysis indicates that misidentification and/or sequencing errors could be responsible for some of the high values of divergence. Research in Latin American malaria vector taxonomy profited from molecular data provided by single or few field capture mosquitoes. However we propose that caution should be taken and minimum requirements considered in the design of additional studies. Future studies in this field should consider that: (1) voucher specimens, assigned to the DNA sequences, need to be deposited in collections, (2) intraspecific variations should be thoroughly evaluated, (3) ITS2 and other molecular markers, considered as a group, will provide more reliable information, (4) biological data about vector populations are missing and should be prioritized, (5) the molecular markers are most powerful when coupled with traditional taxonomic tools.
Resumo:
Dengue outbreaks have occurred in several regions in Brazil and cocirculating dengue virus type 1 (DENV-1), DENV-2, and DENV-3 have been frequently observed. Dual infection by DENV-2 and DENV-3 was identified by type-specific indirect immunofluorescence assay and confirmed by reverse transcription polymerase chain reaction in a patient in Ceará with a mild disease. This is the first documented case of simultaneous infection with DENV-2 and DENV-3 in Brazil. Sequencing confirmed DENV-2 and DENV-3 (South-East/American) genotype III and (SriLanka/India), genotype III respectively.
Resumo:
An effective schistosome vaccine is a desirable control tool but progress towards that goal has been slow. Protective immunity has been difficult to demonstrate in humans, particularly children, so no routes to a vaccine have emerged from that source. The concept of concomitant immunity appeared to offer a paradigm for a vaccine operating against incoming larvae in the skin but did not yield the expected dividends. The mining of crude parasite extracts, the use of monoclonal antibodies and protein selection based on immunogenicity produced a panel of vaccine candidates, mostly of cytoplasmic origin. However, none of these performed well in independent rodent trials, but glutathione-S-transferease from Schistosoma haematobium is currently undergoing clinical trials as an anti-fecundity vaccine. The sequencing of the S. mansoni transcriptome and genome and the development of proteomic and microarray technologies has dramatically improved the possibilities for identifying novel vaccine candidates, particularly proteins secreted from or exposed at the surface of schistosomula and adult worms. These discoveries are leading to a new round of protein expression and protection experiments that will enable us to evaluate systematically all the major targets available for immune intervention. Only then will we know if schistosomes have an Achilles' heel.
Resumo:
In the course of its complex life cycle, the parasite Schistosoma mansoni need to adapt to distinct environments, and consequently is exposed to various DNA damaging agents. The Schistosoma genome sequencing initiative has uncovered sequences from genes and transcripts related to the process of DNA damage tolerance as the enzymes UBC13, MMS2, and RAD6. In the present work, we evaluate the importance of this process in different stages of the life cycle of this parasite. The importance is evidenced by expression and phylogenetic profiles, which show the conservation of this pathway from protozoa to mammalians on evolution.
Resumo:
To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 × coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.
Resumo:
The tegument surface of the adult schistosome, bounded by a normal plasma membrane overlain by a secreted membranocalyx, holds the key to understanding how schistosomes evade host immune responses. Recent advances in mass spectrometry (MS), and the sequencing of the Schistosoma mansoni transcriptome/genome, have facilitated schistosome proteomics. We detached the tegument from the worm body and enriched its surface membranes by differential extraction, before subjecting the preparation to liquid chromatography-based proteomics to identify its constituents. The most exposed proteins on live worms were labelled with impearmeant biotinylation reagents, and we also developed methods to isolate the membranocalyx for analysis. We identified transporters for sugars, amino acids, inorganic ions and water, which confirm the importance of the tegument plasma membrane in nutrient acquisition and solute balance. Enzymes, including phosphohydrolases, esterases and carbonic anhydrase were located with their catalytic domains external to the plasma membrane, while five tetraspanins, annexin and dysferlin were implicated in membrane architecture. In contrast, few parasite proteins could be assigned to the membranocalyx but mouse immune response proteins, including three immunoglobulins and two complement factors, were detected, plus host membrane proteins such as CD44, integrin and a complement regulatory protein, testifying to the acquisitive properties of the secreted bilayer.
Resumo:
Tuberculosis (TB) is an infectious disease that continues to take its toll on human lives. Paleopathological research indicates that it has been a significant cause of death among humans for at least five thousand years. Because of the devastating consequences to human health, social systems, and endangered primate species, TB has been the subject of many and varied research efforts throughout the world, efforts that are amassing an enormous amount of data concerning the causative agent Mycobacterium tuberculosis. Despite sequencing of the M. tuberculosis genome and numerous molecular epidemiological studies, many questions remain regarding the origin, evolution, and future co-evolutionary trajectory of M. tuberculosis and humans. Indeed, the origin of pre-Columbian New World TB has been and remains hotly debated, and resolution of this controversy will likely only come with integration of data and theory from multiple disciplines. In this paper, we discuss the pre-Columbian TB controversy, and then use research from biological and biomedical sciences to help inform paleopathological and archaeological studies of this ubiquitous disease that plagued our ancient forbears.
Resumo:
This study describes the genetic relationships of the first human astrovirus type-8 (HAstV-8) detected in Belém-Brazil, during a public hospital-based study. This strain was compared with other HAstV-8 strains identified elsewhere which have sequences available at GeneBank. The regions ORF1a (primers Mon348/Mon340) and ORF2 (primers Mon269/Mon270) were analyzed by nucleotide sequencing and a high similarity rate was observed among the Belém strain and other HAstV-8 strains. In ORF1a, homology values of 93-100% were detected, and in ORF2 96-99%. Considering the sequence variation (7%) observed in ORF2 region, it was suggested that HAstV-8 strains could be divided in three different lineages.