971 resultados para error probability
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
In this paper, the statistical properties of tropical ice clouds (ice water content, visible extinction, effective radius, and total number concentration) derived from 3 yr of ground-based radar–lidar retrievals from the U.S. Department of Energy Atmospheric Radiation Measurement Climate Research Facility in Darwin, Australia, are compared with the same properties derived using the official CloudSat microphysical retrieval methods and from a simpler statistical method using radar reflectivity and air temperature. It is shown that the two official CloudSat microphysical products (2B-CWC-RO and 2B-CWC-RVOD) are statistically virtually identical. The comparison with the ground-based radar–lidar retrievals shows that all satellite methods produce ice water contents and extinctions in a much narrower range than the ground-based method and overestimate the mean vertical profiles of microphysical parameters below 10-km height by over a factor of 2. Better agreements are obtained above 10-km height. Ways to improve these estimates are suggested in this study. Effective radii retrievals from the standard CloudSat algorithms are characterized by a large positive bias of 8–12 μm. A sensitivity test shows that in response to such a bias the cloud longwave forcing is increased from 44.6 to 46.9 W m−2 (implying an error of about 5%), whereas the negative cloud shortwave forcing is increased from −81.6 to −82.8 W m−2. Further analysis reveals that these modest effects (although not insignificant) can be much larger for optically thick clouds. The statistical method using CloudSat reflectivities and air temperature was found to produce inaccurate mean vertical profiles and probability distribution functions of effective radius. This study also shows that the retrieval of the total number concentration needs to be improved in the official CloudSat microphysical methods prior to a quantitative use for the characterization of tropical ice clouds. Finally, the statistical relationship used to produce ice water content from extinction and air temperature obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is evaluated for tropical ice clouds. It is suggested that the CALIPSO ice water content retrieval is robust for tropical ice clouds, but that the temperature dependence of the statistical relationship used should be slightly refined to better reproduce the radar–lidar retrievals.
Resumo:
Background: Medication errors are common in primary care and are associated with considerable risk of patient harm. We tested whether a pharmacist-led, information technology-based intervention was more effective than simple feedback in reducing the number of patients at risk of measures related to hazardous prescribing and inadequate blood-test monitoring of medicines 6 months after the intervention. Methods: In this pragmatic, cluster randomised trial general practices in the UK were stratified by research site and list size, and randomly assigned by a web-based randomisation service in block sizes of two or four to one of two groups. The practices were allocated to either computer-generated simple feedback for at-risk patients (control) or a pharmacist-led information technology intervention (PINCER), composed of feedback, educational outreach, and dedicated support. The allocation was masked to general practices, patients, pharmacists, researchers, and statisticians. Primary outcomes were the proportions of patients at 6 months after the intervention who had had any of three clinically important errors: non-selective non-steroidal anti-inflammatory drugs (NSAIDs) prescribed to those with a history of peptic ulcer without co-prescription of a proton-pump inhibitor; β blockers prescribed to those with a history of asthma; long-term prescription of angiotensin converting enzyme (ACE) inhibitor or loop diuretics to those 75 years or older without assessment of urea and electrolytes in the preceding 15 months. The cost per error avoided was estimated by incremental cost-eff ectiveness analysis. This study is registered with Controlled-Trials.com, number ISRCTN21785299. Findings: 72 general practices with a combined list size of 480 942 patients were randomised. At 6 months’ follow-up, patients in the PINCER group were significantly less likely to have been prescribed a non-selective NSAID if they had a history of peptic ulcer without gastroprotection (OR 0∙58, 95% CI 0∙38–0∙89); a β blocker if they had asthma (0∙73, 0∙58–0∙91); or an ACE inhibitor or loop diuretic without appropriate monitoring (0∙51, 0∙34–0∙78). PINCER has a 95% probability of being cost eff ective if the decision-maker’s ceiling willingness to pay reaches £75 per error avoided at 6 months. Interpretation: The PINCER intervention is an effective method for reducing a range of medication errors in general practices with computerised clinical records. Funding: Patient Safety Research Portfolio, Department of Health, England.
Resumo:
Assimilation of temperature observations into an ocean model near the equator often results in a dynamically unbalanced state with unrealistic overturning circulations. The way in which these circulations arise from systematic errors in the model or its forcing is discussed. A scheme is proposed, based on the theory of state augmentation, which uses the departures of the model state from the observations to update slowly evolving bias fields. Results are summarized from an experiment applying this bias correction scheme to an ocean general circulation model. They show that the method produces more balanced analyses and a better fit to the temperature observations.
Resumo:
Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.
Resumo:
A standard CDMA system is considered and an extension of Pearson's results is used to determine the density function of the interference. The method is shown to work well in some cases, but not so in others. However this approach can be useful in further determining the probability of error of the system with minimal computational requirements.
Resumo:
Consideration is given to a standard CDMA system and determination of the density function of the interference with and without Gaussian noise using sampling theory concepts. The formula derived provides fast and accurate results and is a simple, useful alternative to other methods
Resumo:
The problem of calculating the probability of error in a DS/SSMA system has been extensively studied for more than two decades. When random sequences are employed some conditioning must be done before the application of the central limit theorem is attempted, leading to a Gaussian distribution. The authors seek to characterise the multiple access interference as a random-walk with a random number of steps, for random and deterministic sequences. Using results from random-walk theory, they model the interference as a K-distributed random variable and use it to calculate the probability of error in the form of a series, for a DS/SSMA system with a coherent correlation receiver and BPSK modulation under Gaussian noise. The asymptotic properties of the proposed distribution agree with other analyses. This is, to the best of the authors' knowledge, the first attempt to propose a non-Gaussian distribution for the interference. The modelling can be extended to consider multipath fading and general modulation