971 resultados para engineer to order
Resumo:
A series of new ruthenium(II) complexes of the general formula [Ru(eta(5)-C5H5)(PP)(L)][PF6] (PP = DPPE or 2PPh(3), L = 4-butoxybenzonitrile or N-(3-cyanophenyl)formamide) and the binuclear iron(II) complex [Fe(eta(5)-C5H5)(PP)(mu-L)(PP)(eta(5)-C5H5)Fe][PF6](2) (L = (E)-2-(3-(4-nitrophenyl)allylidene)malononitrile, that has been also newly synthesized) have been prepared and studied to evaluate their potential in the second harmonic generation property. All the new compounds were fully characterized by NMR, IR and UV-Vis spectroscopies and their electrochemistry behaviour was studied by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of three of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at fundamental wavelength of 1500 nm and the calculated static beta(0) values are found to fall in the range 65-212 x 10(-30) esu. Compound presenting beta(0) = 212 x 10(-30) esu has revealed to be 1.2 times more efficient than urea standard in the second harmonic generation (SHG) property, measured in the solid state by Kurtz powder technique, using a Nd:YAG laser (1064 nm). (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Background: Acute respiratory infections are usual in children under three years old occurring in upper respiratory tract, having an impact on child and caregiver’s quality of life predisposing to otitis media or bronchiolitis. There are few valid and reliable measures to determine the child’s respiratory condition and to guide the physiotherapy intervention. Aim: To assess the intra and inter rater reliability of nasal auscultation, to analyze the relation between sounds’ classification and middle ear’s pressure and compliance as well as with the Clinical Severity Score. Methods: A cross-sectional observational study was composed by 125 nursery children aged up to three years old. Tympanometry, pulmonary and nasal auscultation and application of Clinical Severity Score were performed to each child. Nasal auscultation sounds’ were recorded and sent to 3 blinded experts, that classified, as “obstructed” and “unobstructed”, with a 48 hours interval, in order to analyze inter and intra rater reliability. Results: Nasal auscultation revealed a substantial inter and intra rater reliability (=0,749 and evaluator A - K= 0,691; evaluator B - K= 0,605 and evaluator C - K= 0,724, respectively). Both ears’ pressure was significantly lower in children with an "unobstructed" nasal sound when compared with an “obstructed” nasal sound (t=-3,599, p<0,001 in left ear; t=-2,258, p=0,026 in right ear). Compliance in both ears was significantly lower in children with an "obstructed" nasal sound when compared with “unobstructed” nasal sound (t=-2,728, p=0,007 in left ear; t=-3,830, p<0,001 in right ear). There was a statistically significant association between sounds’ classification and tympanograms types in both ear’s (=11,437, p=0,003 in left ear; =13,535, p=0,001 in right ear). There was a trend to children with an "unobstructed" nasal sound that had a lower clinical severity score when compared with “obstructed” children. Conclusion: It was observed a good intra and substantial inter reliability for nasal auscultation. Nasal auscultation sounds’ classification was related to middle ears’ pressure and compliance.
Resumo:
Asthma is a chronic inflammatory disorder of the respiratory airways affecting people of all ages, and constitutes a serious public health problem worldwide (6). Such a chronic inflammation is invariably associated with injury and repair of the bronchial epithelium known as remodelling (11). Inflammation, remodelling, and altered neural control of the airways are responsible for both recurrent exacerbations of asthma and increasingly permanent airflow obstruction (11, 29, 34). Excessive airway narrowing is caused by altered smooth muscle behaviour, in close interaction with swelling of the airway walls, parenchyma retractile forces, and enhanced intraluminal secretions (29, 38). All these functional and structural changes are associated with the characteristic symptoms of asthma – cough, chest tightness, and wheezing –and have a significant impact on patients’ daily lives, on their families and also on society (1, 24, 29). Recent epidemiological studies show an increase in the prevalence of asthma, mainly in industrial countries (12, 25, 37). The reasons for this increase may depend on host factors (e.g., genetic disposition) or on environmental factors like air pollution or contact with allergens (6, 22, 29). Physical exercise is probably the most common trigger for brief episodes of symptoms, and is assumed to induce airflow limitations in most asthmatic children and young adults (16, 24, 29, 33). Exercise-induced asthma (EIA) is defined as an intermittent narrowing of the airways, generally associated with respiratory symptoms (chest tightness, cough, wheezing and dyspnoea), occurring after 3 to 10 minutes of vigorous exercise with a maximal severity during 5 to 15 minutes after the end of the exercise (9, 14, 16, 24, 33). The definitive diagnosis of EIA is confirmed by the measurement of pre- and post-exercise expiratory flows documenting either a 15% fall in the forced expiratory volume in 1 second (FEV1), or a ≥15 to 20% fall in peak expiratory flow (PEF) (9, 24, 29). Some types of physical exercise have been associated with the occurrence of bronchial symptoms and asthma (5, 15, 17). For instance, demanding activities such as basketball or soccer could cause more severe attacks than less vigorous ones such as baseball or jogging (33). The mechanisms of exercise-induced airflow limitations seem to be related to changes in the respiratory mucosa induced by hyperventilation (9, 29). The heat loss from the airways during exercise, and possibly its post-exercise rewarming may contribute to the exercise-induced bronchoconstriction (EIB) (27). Additionally, the concomitant dehydration from the respiratory mucosa during exercise leads to an increased interstitial osmolarity, which may also contribute to bronchoconstriction (4, 36). So, the risk of EIB in asthmatically predisposed subjects seems to be higher with greater ventilation rates and the cooler and drier the inspired air is (23). The incidence of EIA in physically demanding coldweather sports like competitive figure skating and ice hockey has been found to occur in up to 30 to 35% of the participants (32). In contrast, swimming is often recommended to asthmatic individuals, because it improves the functionality of respiratory muscles and, moreover, it seems to have a concomitant beneficial effect on the prevalence of asthma exacerbations (14, 26), supporting the idea that the risk of EIB would be smaller in warm and humid environments. This topic, however, remains controversial since the chlorified water of swimming pools has been suspected as a potential trigger factor for some asthmatic patients (7, 8, 20, 21). In fact, the higher asthma incidence observed in industrialised countries has recently been linked to the exposition to chloride (7, 8, 30). Although clinical and epidemiological data suggest an influence of humidity and temperature of the inspired air on the bronchial response of asthmatic subjects during exercise, some of those studies did not accurately control the intensity of the exercise (2, 13), raising speculation of whether the experienced exercise overload was comparable for all subjects. Additionally, most of the studies did not include a control group (2, 10, 19, 39), which may lead to doubts about whether asthma per se has conditioned the observed results. Moreover, since the main targeted age group of these studies has been adults (10, 19, 39), any extrapolation to childhood/adolescence might be questionable regarding the different lung maturation. Considering the higher incidence of asthma in youngsters (30) and the fact that only the works of Amirav and coworkers (2, 3) have focused on this age group, a scarcity of scientific data can be identified. Additionally, since the main environmental trigger factors, i.e., temperature and humidity, were tested separately (10, 28, 39) it would be useful to analyse these two variables simultaneously because of their synergic effect on water and heat loss by the airways (31, 33). It also appears important to estimate the airway responsiveness to exercise within moderate environmental ranges of temperature and humidity, trying to avoid extreme temperatures and humidity conditions used by others (2, 3). So, the aim of this study was to analyse the influence of moderate changes in air temperature and humidity simultaneously on the acute ventilatory response to exercise in asthmatic children. To overcome the above referred to methodological limitations, we used a 15 minute progressive exercise trial on a cycle ergometer at 3 different workload intensities, and we collected data related to heart rate, respiratory quotient, minute ventilation and oxygen uptake in order to ensure that physiological exercise repercussions were the same in both environments. The tests were done in a “normal” climatic environment (in a gymnasium) and in a hot and humid environment (swimming pool); for the latter, direct chloride exposition was avoided.
Resumo:
Throughout the world, epidemiological studies were established to examine the relationship between air pollution and mortality rates and adverse respiratory health effects. However, despite the years of discussion the correlation between adverse health effects and atmospheric pollution remains controversial, partly because these studies are frequently restricted to small and well-monitored areas. Monitoring air pollution is complex due to the large spatial and temporal variations of pollution phenomena, the high costs of recording instruments, and the low sampling density of a purely instrumental approach. Therefore, together with the traditional instrumental monitoring, bioindication techniques allow for the mapping of pollution effects over wide areas with a high sampling density. In this study, instrumental and biomonitoring techniques were integrated to support an epidemiological study that will be developed in an industrial area located in Gijon in the coastal of central Asturias, Spain. Three main objectives were proposed to (i) analyze temporal patterns of PM10 concentrations in order to apportion emissions sources, (ii) investigate spatial patterns of lichen conductivity to identify the impact of the studied industrial area in air quality, and (iii) establish relationships amongst lichen conductivity with some site-specific characteristics. Samples of the epiphytic lichen Parmelia sulcata were transplanted in a grid of 18 by 20 km with an industrial area in the center. Lichens were exposed for a 5-mo period starting in April 2010. After exposure, lichen samples were soaked in 18-MΩ water aimed at determination of water electrical conductivity and, consequently, lichen vitality and cell damage. A marked decreasing gradient of lichens conductivity relative to distance from the emitting sources was observed. Transplants from a sampling site proximal to the industrial area reached values 10-fold higher than levels far from it. This finding showed that lichens reacted physiologically in the polluted industrial area as evidenced by increased conductivity correlated to contamination level. The integration of temporal PM10 measurements and analysis of wind direction corroborated the importance of this industrialized region for air quality measurements and identified the relevance of traffic for the urban area.
Resumo:
Water covers over 70% of the Earth's surface, and is vital for all known forms of life. But only 3% of the Earth's water is fresh water, and less than 0.3% of all freshwater is in rivers, lakes, reservoirs and the atmosphere. However, rivers and lakes are an important part of fresh surface water, amounting to about 89%. In this Master Thesis dissertation, the focus is on three types of water bodies – rivers, lakes and reservoirs, and their water quality issues in Asian countries. The surface water quality in a region is largely determined both by the natural processes such as climate or geographic conditions, and the anthropogenic influences such as industrial and agricultural activities or land use conversion. The quality of the water can be affected by pollutants discharge from a specific point through a sewer pipe and also by extensive drainage from agriculture/urban areas and within basin. Hence, water pollutant sources can be divided into two categories: Point source pollution and Non-point source (NPS) pollution. Seasonal variations in precipitation and surface run-off have a strong effect on river discharge and the concentration of pollutants in water bodies. For example, in the rainy season, heavy and persistent rain wash off the ground, the runoff flow increases and may contain various kinds of pollutants and, eventually, enters the water bodies. In some cases, especially in confined water bodies, the quality may be positive related with rainfall in the wet season, because this confined type of fresh water systems allows high dilution of pollutants, decreasing their possible impacts. During the dry season, the quality of water is largely related to industrialization and urbanization pollution. The aim of this study is to identify the most common water quality problems in Asian countries and to enumerate and analyze the methodologies used for assessment of water quality conditions of both rivers and confined water bodies (lakes and reservoirs). Based on the evaluation of a sample of 57 papers, dated between 2000 and 2012, it was found that over the past decade, the water quality of rivers, lakes, and reservoirs in developing countries is being degraded. Water pollution and destruction of aquatic ecosystems have caused massive damage to the functions and integrity of water resources. The most widespread NPS in Asian countries and those which have the greatest spatial impacts are urban runoff and agriculture. Locally, mine waste runoff and rice paddy are serious NPS problems. The most relevant point pollution sources are the effluents from factories, sewage treatment plant, and public or household facilities. It was found that the most used methodology was unquestionably the monitoring activity, used in 49 of analyzed studies, accounting for 86%. Sometimes, data from historical databases were used as well. It can be seen that taking samples from the water body and then carry on laboratory work (chemical analyses) is important because it can give an understanding of the water quality. 6 papers (11%) used a method that combined monitoring data and modeling. 6 papers (11%) just applied a model to estimate the quality of water. Modeling is a useful resource when there is limited budget since some models are of free download and use. In particular, several of used models come from the U.S.A, but they have their own purposes and features, meaning that a careful application of the models to other countries and a critical discussion of the results are crucial. 5 papers (9%) focus on a method combining monitoring data and statistical analysis. When there is a huge data matrix, the researchers need an efficient way of interpretation of the information which is provided by statistics. 3 papers (5%) used a method combining monitoring data, statistical analysis and modeling. These different methods are all valuable to evaluate the water quality. It was also found that the evaluation of water quality was made as well by using other types of sampling different than water itself, and they also provide useful information to understand the condition of the water body. These additional monitoring activities are: Air sampling, sediment sampling, phytoplankton sampling and aquatic animal tissues sampling. Despite considerable progress in developing and applying control regulations to point and NPS pollution, the pollution status of rivers, lakes, and reservoirs in Asian countries is not improving. In fact, this reflects the slow pace of investment in new infrastructure for pollution control and growing population pressures. Water laws or regulations and public involvement in enforcement can play a constructive and indispensable role in environmental protection. In the near future, in order to protect water from further contamination, rapid action is highly needed to control the various kinds of effluents in one region. Environmental remediation and treatment of industrial effluent and municipal wastewaters is essential. It is also important to prevent the direct input of agricultural and mine site runoff. Finally, stricter environmental regulation for water quality is required to support protection and management strategies. It would have been possible to get further information based in the 57 sample of papers. For instance, it would have been interesting to compare the level of concentrations of some pollutants in the diferente Asian countries. However the limit of three months duration for this study prevented further work to take place. In spite of this, the study objectives were achieved: the work provided an overview of the most relevant water quality problems in rivers, lakes and reservoirs in Asian countries, and also listed and analyzed the most common methodologies.
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.
Resumo:
The BALA project (Biodiversity of Arthropods of Laurisilva of the Azores) is a research initiative to quantify the spatial distribution of arthropod biodiversity in native forests of the Azores archipelago. Arthropods were collected using a combination of two techniques, targeting epigean (ground dwelling) and canopy (arboreal) arthropods: pitfall traps (with Turquin and Ethylene solutions) and beating samples (using the three most dominant plant species). A total of 109 transects distributed amongst 18 forest fragments in seven of the nine Azorean islands were used in this study. The performance of alternative sampling methods and effort were tested. No significant differences were found in the accumulated number of species captured whether an alternative method was used or whether another transect with similar effort was established in another location within the same fragment. A combination of Ethylene and Turquin traps captured more species per individual, Turquin and beating captured more species per sample, and Turquin captured more species per unit time. An optimization exercise was performed and we found that the protocol applied during recent years is very close to optimal, allowing its future replication with confidence. The minimum combinations of sampling effort and methods, in order to monitor or to inventory diversity, taking into account different proportions of sample completeness are discussed.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal.
Resumo:
The presented work was conducted within the Dissertation / Internship, branch of Environmental Protection Technology, associated to the Master thesis in Chemical Engineering by the Instituto Superior de Engenharia do Porto and it was developed in the Aquatest a.s, headquartered in Prague, in Czech Republic. The ore mining exploitation in the Czech Republic began in the thirteenth century, and has been extended until the twentieth century, being now evident the consequences of the intensive extraction which includes contamination of soil and sub-soil by high concentrations of heavy metals. The mountain region of Zlaté Hory was chosen for the implementation of the remediation project, which consisted in the construction of three cells (tanks), the first to raise the pH, the second for the sedimentation of the formed precipitates and a third to increase the process efficiency in order to reduce high concentrations of metals, with special emphasis on iron, manganese and sulfates. This project was initiated in 2005, being pioneer in this country and is still ongoing due to the complex chemical and biological phenomenon’s inherent to the system. At the site where the project was implemented, there is a natural lagoon, thereby enabling a comparative study of the two systems (natural and artificial) regarding the efficiency of both in the reduction/ removal of the referred pollutants. The study aimed to assist and cooperate in the ongoing investigation at the company Aquatest, in terms of field work conducted in Zlaté Hory and in terms of research methodologies used in it. Thereby, it was carried out a survey and analysis of available data from 2005 to 2008, being complemented by the treatment of new data from 2009 to 2010. Moreover, a theoretical study of the chemical and biological processes that occurs in both systems was performed. Regarding the field work, an active participation in the collection and in situ sample analyzing of water and soil from the natural pond has been attained, with the supervision of Engineer, Irena Šupiková. Laboratory analysis of water and soil were carried out by laboratory technicians. It was found that the natural lagoon is more efficient in reducing iron and manganese, being obtained removal percentages of 100%. The artificial lagoon had a removal percentage of 90% and 33% for iron and manganese respectively. Despite the minor efficiency of the constructed wetland, it must be pointed out that this system was designed for the treatment and consequent reduction of iron. In this context, it can conclude that the main goal has been achieved. In the case of sulphates, the removal optimization is yet a goal to be achieved not only in the Czech Republic but also in other places where this type of contamination persists. In fact, in the natural lagoon and in the constructed wetland, removal efficiencies of 45% and 7% were obtained respectively. It has been speculated that the water at the entrance of both systems has different sources. The analysis of the collected data shows at the entrance of the natural pond, a concentration of 4.6 mg/L of total iron, 14.6 mg/L of manganese and 951 mg/L of sulphates. In the artificial pond, the concentrations are 27.7 mg/L, 8.1 mg/L and 382 mg/L respectively for iron, manganese and sulphates. During 2010 the investigation has been expanded. The study of soil samples has started in order to observe and evaluate the contribution of bacteria in the removal of heavy metals being in its early phase. Summarizing, this technology has revealed to be an interesting solution, since in addition to substantially reduce the mentioned contaminants, mostly iron, it combines the low cost of implementation with an reduced maintenance, and it can also be installed in recreation parks, providing habitats for plants and birds.
Resumo:
A realização desta Tese/Dissertação tem como objectivo o estudo e implementação piloto de um Sistema de Supervisão e Aquisição de dados (SCADA) na Swedwood Portugal, na qual exerço as funções de Engenheiro de Processo nas linhas de montagem de mobiliário. Foi efectuado um estudo das necessidades da empresa relativamente às melhorias dos processos das linhas de montagem, com o intuito de melhorar a montagem do semi-produto, a nível de qualidade das matérias-primas, operação e desempenho de equipamentos. Chegou-se à conclusão que existe uma grande necessidade de controlar a qualidade das matérias-primas utilizadas na construção do semi-produto em tempo real, de modo a que seja possível diminuir a complexidade na recolha atempada de amostras por parte dos elementos de operação e diminuir o atraso da entrega de resultados das amostras por parte do laboratório. A colagem é um elemento crítico na montagem do semi-produto, devido às variações de viscosidade da cola, consequência das variações climatéricas a que foi sujeita, desde a saída do fornecedor até à sua utilização nas linhas de montagem. Para tal concebeu-se uma solução para dar uma resposta mais rápida no controlo de qualidade da cola à base de acetato de polivinil (PVAC), ou seja, a implementação piloto de um sistema SCADA na sala de colas, de modo a que haja um controlo a nível de temperatura e humidade, controlo de viscosidade em tempo real e controlo do nível da cola na cuba, fazendo com que haja só uma supervisão por parte dos elementos de operação. Optou-se por um conjunto de hardware e software da SIMATIC desenvolvido pela Siemens, para elaboração da programação e desenvolvimento da Interface Homem Máquina (HMI).
Resumo:
The Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic defect in the world. The most common clinical manifestations are acute hemolytic anemia associated with drugs, infections, neonatal jaundice and hemolytic non-spherocytic chronic anemia. The main aim of this study was to determine the frequency of major genetic variants of G6PD leading to enzyme deficiency in children from 0 to 14 years at a Pediatric Hospital in Luanda, Angola. A cross-sectional and descriptive analytical study covered a total of 194 children aged from 0 to 14 years, of both genders and hospitalized at the Pediatric Hospital David Bernardino, Luanda between November and December, 2011. The G202A, A376G and C563T mutations of the G6PD gene were determined by real-time PCR with Taqman probes. The disabled A-/A- genotype was detected in 10 girls (10.9%). Among the boys, 21 (20.6%) presented the genotype A-. Considering all the samples, the A- variant was observed in 22.4% of cases. The Mediterranean mutation was not detected in the Angolan sample. Furthermore, no association was found between genotype and anemia, nutritional state and mucosa color. A significant association, however, was observed with jaundice. Based on the results obtained, there is a clear need to identify those with the disabled genotype in the Angolan population in order to avoid cases of drug-induced anemia, particularly in the treatment of malaria, so prevalent in Angola.
Resumo:
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Resumo:
We consider a fluid of hard boomerangs, each composed of two hard spherocylinders joined at their ends at an angle Psi. The resulting particle is nonconvex and biaxial. The occurence of nematic order in such a system has been investigated using Straley's theory, which is a simplificaton of Onsager's second-virial treatment of long hard rods, and by bifurcation analysis. The excluded volume of two hard boomerangs has been approximated by the sum of excluded volumes of pairs of constituent spherocylinders, and the angle-dependent second-virial coefficient has been replaced by a low-order interpolating function. At the so-called Landau point, Psi(Landau)approximate to 107.4 degrees, the fluid undergoes a continuous transition from the isotropic to a biaxial nematic (B) phase. For Psi not equal Psi(Landau) ordering is via a first-order transition into a rod-like uniaxial nematic phase (N(+)) if Psi > Psi(Landau), or a plate-like uniaxial nematic (N(-)) phase if Psi < Psi(Landau). The B phase is separated from the N(+) and N(-) phases by two lines of continuous transitions meeting at the Landau point. This topology of the phase diagram is in agreement with previous studies of spheroplatelets and biaxial ellipsoids. We have checked the accuracy of our theory by performing numerical calculations of the angle-dependent second virial coefficient, which yields Psi(Landau)approximate to 110 degrees for very long rods, and Psi(Landau)approximate to 90 degrees for short rods. In the latter case, the I-N transitions occur at unphysically high packing fractions, reflecting the inappropriateness of the second-virial approximation in this limit.
Resumo:
Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.