956 resultados para eletro-optical measurements
In Situ Characterization of Optical Absorption by Carbonaceous Aerosols: Calibration and Measurement
Resumo:
Light absorption by aerosols has a great impact on climate change. A Photoacoustic spectrometer (PA) coupled with aerosol-based classification techniques represents an in situ method that can quantify the light absorption by aerosols in a real time, yet significant differences have been reported using this method versus filter based methods or the so-called difference method based upon light extinction and light scattering measurements. This dissertation focuses on developing calibration techniques for instruments used in measuring the light absorption cross section, including both particle diameter measurements by the differential mobility analyzer (DMA) and light absorption measurements by PA. Appropriate reference materials were explored for the calibration/validation of both measurements. The light absorption of carbonaceous aerosols was also investigated to provide fundamental understanding to the absorption mechanism. The first topic of interest in this dissertation is the development of calibration nanoparticles. In this study, bionanoparticles were confirmed to be a promising reference material for particle diameter as well as ion-mobility. Experimentally, bionanoparticles demonstrated outstanding homogeneity in mobility compared to currently used calibration particles. A numerical method was developed to calculate the true distribution and to explain the broadening of measured distribution. The high stability of bionanoparticles was also confirmed. For PA measurement, three aerosol with spherical or near spherical shapes were investigated as possible candidates for a reference standard: C60, copper and silver. Comparisons were made between experimental photoacoustic absorption data with Mie theory calculations. This resulted in the identification of C60 particles with a mobility diameter of 150 nm to 400 nm as an absorbing standard at wavelengths of 405 nm and 660 nm. Copper particles with a mobility diameter of 80 nm to 300 nm are also shown to be a promising reference candidate at wavelength of 405 nm. The second topic of this dissertation focuses on the investigation of light absorption by carbonaceous particles using PA. Optical absorption spectra of size and mass selected laboratory generated aerosols consisting of black carbon (BC), BC with non-absorbing coating (ammonium sulfate and sodium chloride) and BC with a weakly absorbing coating (brown carbon derived from humic acid) were measured across the visible to near-IR (500 nm to 840 nm). The manner in which BC mixed with each coating material was investigated. The absorption enhancement of BC was determined to be wavelength dependent. Optical absorption spectra were also taken for size and mass selected smoldering smoke produced from six types of commonly seen wood in a laboratory scale apparatus.
Resumo:
We present measurements of the transmission spectra of 87Rb atoms at 780 nm in the vicinity of a nanofiber. A uniform distribution of fixed atoms around a nanofiber should produce a spectrum that is broadened towards the red due to shifts from the van der Waals potential. If the atoms are free, this also produces an attractive force that accelerates them until they collide with the fiber which depletes the steady-state density of near-surface atoms. It is for this reason that measurements of the van der Waals interaction are sparse. We confirm this by measuring the spectrum cold atoms from a magneto-optical trap around the fiber, revealing a symmetric line shape with nearly the natural linewidth of the transition. When we use an auxiliary 750 nm laser we are able to controllably desorb a steady flux of atoms from the fiber that reside near the surface (less than 50 nm) long enough to feel the van der Walls interaction and produce an asymmetric spectrum. We quantify the spectral asymmetry as a function of 750 nm laser power and find a maximum. Our model, which that takes into account the change in the density distribution, qualitatively explains the observations. In the future this can be used as a tool to more comprehensively study atom-surface interactions.
Resumo:
Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking.
In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy efficiency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s.
Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW.
Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be –64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.
Resumo:
Compressed covariance sensing using quadratic samplers is gaining increasing interest in recent literature. Covariance matrix often plays the role of a sufficient statistic in many signal and information processing tasks. However, owing to the large dimension of the data, it may become necessary to obtain a compressed sketch of the high dimensional covariance matrix to reduce the associated storage and communication costs. Nested sampling has been proposed in the past as an efficient sub-Nyquist sampling strategy that enables perfect reconstruction of the autocorrelation sequence of Wide-Sense Stationary (WSS) signals, as though it was sampled at the Nyquist rate. The key idea behind nested sampling is to exploit properties of the difference set that naturally arises in quadratic measurement model associated with covariance compression. In this thesis, we will focus on developing novel versions of nested sampling for low rank Toeplitz covariance estimation, and phase retrieval, where the latter problem finds many applications in high resolution optical imaging, X-ray crystallography and molecular imaging. The problem of low rank compressive Toeplitz covariance estimation is first shown to be fundamentally related to that of line spectrum recovery. In absence if noise, this connection can be exploited to develop a particular kind of sampler called the Generalized Nested Sampler (GNS), that can achieve optimal compression rates. In presence of bounded noise, we develop a regularization-free algorithm that provably leads to stable recovery of the high dimensional Toeplitz matrix from its order-wise minimal sketch acquired using a GNS. Contrary to existing TV-norm and nuclear norm based reconstruction algorithms, our technique does not use any tuning parameters, which can be of great practical value. The idea of nested sampling idea also finds a surprising use in the problem of phase retrieval, which has been of great interest in recent times for its convex formulation via PhaseLift, By using another modified version of nested sampling, namely the Partial Nested Fourier Sampler (PNFS), we show that with probability one, it is possible to achieve a certain conjectured lower bound on the necessary measurement size. Moreover, for sparse data, an l1 minimization based algorithm is proposed that can lead to stable phase retrieval using order-wise minimal number of measurements.
Resumo:
We present a study where the energy loss function of Ta2O5, initially derived in the optical limit for a limited region of excitation energies from reflection electron energy loss spectroscopy (REELS) measurements, was improved and extended to the whole momentum and energy excitation region through a suitable theoretical analysis using the Mermin dielectric function and requiring the fulfillment of physically motivated restrictions, such as the f- and KK-sum rules. The material stopping cross section (SCS) and energy-loss straggling measured for 300–2000 keV proton and 200–6000 keV helium ion beams by means of Rutherford backscattering spectrometry (RBS) were compared to the same quantities calculated in the dielectric framework, showing an excellent agreement, which is used to judge the reliability of the Ta2O5 energy loss function. Based on this assessment, we have also predicted the inelastic mean free path and the SCS of energetic electrons in Ta2O5.
Resumo:
The electrical and optical coupling between subcells in a multijunction solar cell affects its external quantum efficiency (EQE) measurement. In this study, we show how a low breakdown voltage of a component subcell impacts the EQE determination of a multijunction solar cell and demands the use of a finely adjusted external voltage bias. The optimum voltage bias for the EQE measurement of a Ge subcell in two different GaInP/GaInAs/Ge triple-junction solar cells is determined both by sweeping the external voltage bias and by tracing the I–V curve under the same light bias conditions applied during the EQE measurement. It is shown that the I–V curve gives rapid and valuable information about the adequate light and voltage bias needed, and also helps to detect problems associated with non-ideal I–V curves that might affect the EQE measurement. The results also show that, if a non-optimum voltage bias is applied, a measurement artifact can result. Only when the problems associated with a non-ideal I–V curve and/or a low breakdown voltage have been discarded, the measurement artifacts, if any, can be attributed to other effects such as luminescent coupling between subcells.
Resumo:
The aim of this work is to simulate and optically characterize the piezoelectric performance of complementary metal oxide semiconductor (CMOS) compatible microcantilevers based on aluminium nitride (AlN) and manufactured at room temperature. This study should facilitate the integration of piezoelectric micro-electro-mechanical systems (MEMS) such as microcantilevers, in CMOS technology. Besides compatibility with standard integrated circuit manufacturing procedures, low temperature processing also translates into higher throughput and, as a consequence, lower manufacturing costs. Thus, the use of the piezoelectric properties of AlN manufactured by reactive sputtering at room temperature is an important step towards the integration of this type of devices within future CMOS technology standards. To assess the reliability of our fabrication process, we have manufactured arrays of free-standing microcantilever beams of variable dimension and studied their piezoelectric performance. The characterization of the first out-of-plane modes of AlN-actuated piezoelectric microcantilevers has been carried out using two optical techniques: laser Doppler vibrometry (LDV) and white light interferometry (WLI). In order to actuate the cantilevers, a periodic chirp signal in certain frequency ranges was applied between the device electrodes. The nature of the different vibration modes detected has been studied and compared with that obtained by a finite element model based simulation (COMSOL Multiphysics), showing flexural as well as torsional modes. The correspondence between theoretical and experimental data is reasonably good, probing the viability of this high throughput and CMOS compatible fabrication process. To complete the study, X-ray diffraction as well as d33 piezoelectric coefficient measurements were also carried out.
Resumo:
Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.
Resumo:
Purpose To compare measurements taken using a swept-source optical coherence tomography-based optical biometer (IOLmaster 700) and an optical low-coherence reflectometry biometer (Lenstar 900), and to determine the clinical impacts of differences in their measurements on intraocular lens (IOL) power predictions. Methods Eighty eyes of 80 patients scheduled to undergo cataract surgery were examined with both biometers. The measurements made using each device were axial length (AL), central corneal thickness (CCT), aqueous depth (AQD), lens thickness (LT), mean keratometry (MK), white-to-white distance (WTW), and pupil diameter (PD). Holladay 2 and SRK/T formulas were used to calculate IOL power. Differences in measurement between the two biometers were determined using the paired t-test. Agreement was assessed through intraclass correlation coefficients (ICC) and Bland–Altman plots. Results Mean patient age was 76.3±6.8 years (range 59–89). Using the Lenstar, AL and PD could not be measured in 12.5 and 5.25% of eyes, respectively, while IOLMaster 700 took all measurements in all eyes. The variables CCT, AQD, LT, and MK varied significantly between the two biometers. According to ICCs, correlation between measurements made with both devices was excellent except for WTW and PD. Using the SRK/T formula, IOL power prediction based on the data from the two devices were statistically different, but differences were not clinically significant. Conclusions No clinically relevant differences were detected between the biometers in terms of their measurements and IOL power predictions. Using the IOLMaster 700, it was easier to obtain biometric measurements in eyes with less transparent ocular media or longer AL.
Resumo:
During the Snowball Earth events of the Neoproterozoic, tropical regions of the ocean could have developed a precipitated salt lag deposit left behind by sublimating sea ice. The major salt would have been hydrohalite, NaCl•2H2O. The crystals in such a deposit can be small and highly scattering, resulting in an allwave albedo similar to that of snow. The snow-free sea ice from which such a crust could develop has a lower albedo, around 0.5, so the development of a crust would substantially increase the albedo of tropical regions on Snowball Earth. Hydrohalite crystals are much less absorptive than ice in the near- infrared part of the solar spectrum, so their presence at the surface would increase the overall albedo as well as altering its spectral distribution. In this paper, we use laboratory measurements of the spectral albedo of a hydrohalite lag deposit, in combination with a radiative transfer model, to infer the inherent optical properties of hydrohalite as functions of wavelength. Using this result, we model mixtures of hydrohalite and ice representing both artificially created surfaces in the laboratory and surfaces relevant to Snowball Earth. The model is tested against sequences of laboratory measurements taken during the formation and the dissolution of a lag deposit of hydrohalite. We present a parameterization for the broadband albedo of cold, sublimating sea ice as it forms and evolves a hydrohalite crust, for use in climate models of Snowball Earth.
Resumo:
A method is presented for accurate measurement of spectral flux-reflectance (albedo) in a laboratory, for media with long optical path lengths, such as snow and ice. The approach uses an acrylic hemispheric dome, which, when placed over the surface being studied, serves two functions: (i) it creates an overcast “sky” to illuminate the target surface from all directions within a hemisphere, and (ii) serves as a platform for measuring incident and backscattered spectral radiances, which can be integrated to obtain fluxes. The fluxes are relative measurements and because their ratio is used to determine flux-reflectance, no absolute radiometric calibrations are required. The dome and surface must meet minimum size requirements based on the scattering properties of the surface. This technique is suited for media with long photon path lengths since the backscattered illumination is collected over a large enough area to include photons that reemerge from the domain far from their point of entry because of multiple scattering and small absorption. Comparison between field and laboratory albedo of a portable test surface demonstrates the viability of this method.