980 resultados para dynamic set
Resumo:
PURPOSE: This study aims to identify which aspects of the pupil light reflex are most influenced by rods and cones independently by analyzing pupil recordings from different mouse models of photoreceptor deficiency. METHODS: One-month-old wild type (WT), rodless (Rho-/-), coneless (Cnga3-/-), or photoreceptor less (Cnga3-/-; Rho-/- or Gnat1-/-) mice were subjected to brief red and blue light stimuli of increasing intensity. To describe the initial dynamic response to light, the maximal pupillary constriction amplitudes and the derivative curve of the first 3 seconds were determined. To estimate the postillumination phase, the constriction amplitude at 9.5 seconds after light termination was related to the maximal constriction amplitude. RESULTS: Rho-/- mice showed decreased constriction amplitude but more prolonged pupilloconstriction to all blue and red light stimuli compared to wild type mice. Cnga3-/- mice had constriction amplitudes similar to WT however following maximal constriction, the early and rapid dilation to low intensity blue light was decreased. To high intensity blue light, the Cnga3-/- mice demonstrated marked prolongation of the pupillary constriction. Cnga3-/-; Rho-/- mice had no pupil response to red light of low and medium intensity. CONCLUSIONS: From specific gene defective mouse models which selectively voided the rod or cone function, we determined that mouse rod photoreceptors are highly contributing to the pupil response to blue light stimuli but also to low and medium red stimuli. We also observed that cone cells mainly drive the partial rapid dilation of the initial response to low blue light stimuli. Thus photoreceptor dysfunction can be derived from chromatic pupillometry in mouse models.
Resumo:
Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.
Resumo:
COD discharges out of processes have increased in line with elevating brightness demands for mechanical pulp and papers. The share of lignin-like substances in COD discharges is on average 75%. In this thesis, a plant dynamic model was created and validated as a means to predict COD loading and discharges out of a mill. The assays were carried out in one paper mill integrate producing mechanical printing papers. The objective in the modeling of plant dynamics was to predict day averages of COD load and discharges out of mills. This means that online data, like 1) the level of large storage towers of pulp and white water 2) pulp dosages, 3) production rates and 4) internal white water flows and discharges were used to create transients into the balances of solids and white water, referred to as “plant dynamics”. A conversion coefficient was verified between TOC and COD. The conversion coefficient was used for predicting the flows from TOC to COD to the waste water treatment plant. The COD load was modeled with similar uncertainty as in reference TOC sampling. The water balance of waste water treatment was validated by the reference concentration of COD. The difference of COD predictions against references was within the same deviation of TOC-predictions. The modeled yield losses and retention values of TOC in pulping and bleaching processes and the modeled fixing of colloidal TOC to solids between the pulping plant and the aeration basin in the waste water treatment plant were similar to references presented in literature. The valid water balances of the waste water treatment plant and the reduction model of lignin-like substances produced a valid prediction of COD discharges out of the mill. A 30% increase in the release of lignin-like substances in the form of production problems was observed in pulping and bleaching processes. The same increase was observed in COD discharges out of waste water treatment. In the prediction of annual COD discharge, it was noticed that the reduction of lignin has a wide deviation from year to year and from one mill to another. This made it difficult to compare the parameters of COD discharges validated in plant dynamic simulation with another mill producing mechanical printing papers. However, a trend of moving from unbleached towards high-brightness TMP in COD discharges was valid.
Resumo:
Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.
Resumo:
This paper is a literature review which describes the construction of state of the art of permanent magnet generators and motors constructing and discusses the current and possible application of these machines in industry. Permanent magnet machines are a well-know class of rotating and linear electric machines used for many years in industrial applications. A particular interest for permanent magnet generators is connected with wind mills, which seem to be becoming increasingly popular nowadays. Geared and direct-driven permanent magnet generators are described. A classification of direct-driven permanent magnet generators is given. Design aspects of permanent magnet generators are presented. Permanent magnet generators for wind turbines designs are highlighted. Dynamics and vibration problems of permanent magnet generators covered in literature are presented. The application of the Finite Element Method for mechanical problems solution in the field of permanent magnet generators is discussed.
Resumo:
During the past few years, a considerable number of research articles have been published relating to the structure and function of the major photosynthetic protein complexes, photosystem (PS) I, PSII, cytochrome (Cyt) b6f, and adenosine triphosphate (ATP) synthase. Sequencing of the Arabidopsis thaliana (Arabidopsis) genome together with several high-quality proteomics studies has, however, revealed that the thylakoid membrane network of plant chloroplasts still contains a number of functionally unknown proteins. These proteins may have a role as auxiliary proteins guiding the assembly, maintenance, and turnover of the thylakoid protein complexes, or they may be as yet unknown subunits of the photosynthetic complexes. Novel subunits are most likely to be found in the NAD(P)H dehydrogenase (NDH) complex, the structure and function of which have remained obscure in the absence of detailed crystallographic data, thus making this thylakoid protein complex a particularly interesting target of investigation. In this thesis, several novel thylakoid-associated proteins were identified by proteomics-based methods. The major goal of characterization of the stroma thylakoid associated polysome-nascent chain complexes was to determine the proteins that guide the dynamic life cycle of PSII. In addition, a large protein complex of ≥ 1,000 kDa, residing in the stroma thylakoid, was characterized in greater depth and it was found to be a supercomplex composed of the PSI and NDH complexes. A set of newly identified proteins from Arabidopsis thylakoids was subjected to detailed characterization using the reverse genetics approach and extensive biochemical and biophysical analysis. The role of the novel proteins, either as auxiliary proteins or subunits of the photosynthetic protein complexes, was revealed. Two novel thylakoid lumen proteins, TLP18.3 and AtCYP38, function as auxiliary proteins assisting specific steps of the assembly/repair of PSII. The role of the 10-kDa thylakoid lumen protein PsbR is related to the optimization of oxygen evolution of PSII by assisting the assembly of the PsbP protein. Two integral thylakoid membrane proteins, NDH45 and NDH48, are novel subunits of the chloroplast NDH complex. Finally, the thylakoid lumen immunophilin AtCYP20-2 is suggested to interact with the NDH complex, instead of PSII as was hypothesized earlier.
Resumo:
Technical analysis of Low Voltage Direct Current (LVDC) distribution systems shows that in LVDC transmission the customer voltage quality is higher. One of the problems in LVDC distribution networks that converters both ends of the DC line are required. Because of the converters produce not pure DC voltage, but some fluctuations as well, the huge electrolytic capacitors are required to reduce voltage distortions in the DC-side. This thesis master’s thesis is focused on calculating required DC-link capacitance for LVDC transmission and estimation of the influence of different parameters on the voltage quality. The goal is to investigate the methods of the DC-link capacitance estimation and location in the transmission line.
Resumo:
As a result of the growing interest in studying employee well-being as a complex process that portrays high levels of within-individual variability and evolves over time, this present study considers the experience of flow in the workplace from a nonlinear dynamical systems approach. Our goal is to offer new ways to move the study of employee well-being beyond linear approaches. With nonlinear dynamical systems theory as the backdrop, we conducted a longitudinal study using the experience sampling method and qualitative semi-structured interviews for data collection; 6981 registers of data were collected from a sample of 60 employees. The obtained time series were analyzed using various techniques derived from the nonlinear dynamical systems theory (i.e., recurrence analysis and surrogate data) and multiple correspondence analyses. The results revealed the following: 1) flow in the workplace presents a high degree of within-individual variability; this variability is characterized as chaotic for most of the cases (75%); 2) high levels of flow are associated with chaos; and 3) different dimensions of the flow experience (e.g., merging of action and awareness) as well as individual (e.g., age) and job characteristics (e.g., job tenure) are associated with the emergence of different dynamic patterns (chaotic, linear and random).
Resumo:
Available empirical evidence regarding the degree of symmetry between European economies in the context of Monetary Unification is not conclusive. This paper offers new empirical evidence concerning this issue related to the manufacturing sector. Instead of using a static approach as most empirical studies do, we analyse the dynamic evolution of shock symmetry using a state-space model. The results show a clear reduction of asymmetries in terms of demand shocks between 1975 and 1996, with an increase in terms of supply shocks at the end of the period.
Resumo:
Synchronous motors are used mainly in large drives, for example in ship propulsion systems and in steel factories' rolling mills because of their high efficiency, high overload capacity and good performance in the field weakening range. This, however, requires an extremely good torque control system. A fast torque response and a torque accuracy are basic requirements for such a drive. For large power, high dynamic performance drives the commonly known principle of field oriented vector control has been used solely hitherto, but nowadays it is not the only way to implement such a drive. A new control method Direct Torque Control (DTC) has also emerged. The performance of such a high quality torque control as DTC in dynamically demanding industrial applications is mainly based on the accurate estimate of the various flux linkages' space vectors. Nowadays industrial motor control systems are real time applications with restricted calculation capacity. At the same time the control system requires a simple, fast calculable and reasonably accurate motor model. In this work a method to handle these problems in a Direct Torque Controlled (DTC) salient pole synchronous motor drive is proposed. A motor model which combines the induction law based "voltage model" and motor inductance parameters based "current model" is presented. The voltage model operates as a main model and is calculated at a very fast sampling rate (for example 40 kHz). The stator flux linkage calculated via integration from the stator voltages is corrected using the stator flux linkage computed from the current model. The current model acts as a supervisor that prevents only the motor stator flux linkage from drifting erroneous during longer time intervals. At very low speeds the role of the current model is emphasised but, nevertheless, the voltage model always stays the main model. At higher speeds the function of the current model correction is to act as a stabiliser of the control system. The current model contains a set of inductance parameters which must be known. The validation of the current model in steady state is not self evident. It depends on the accuracy of the saturated value of the inductances. Parameter measurement of the motor model where the supply inverter is used as a measurement signal generator is presented. This so called identification run can be performed prior to delivery or during drive commissioning. A derivation method for the inductance models used for the representation of the saturation effects is proposed. The performance of the electrically excited synchronous motor supplied with the DTC inverter is proven with experimental results. It is shown that it is possible to obtain a good static accuracy of the DTC's torque controller for an electrically excited synchronous motor. The dynamic response is fast and a new operation point is achieved without oscillation. The operation is stable throughout the speed range. The modelling of the magnetising inductance saturation is essential and cross saturation has to be considered as well. The effect of cross saturation is very significant. A DTC inverter can be used as a measuring equipment and the parameters needed for the motor model can be defined by the inverter itself. The main advantage is that the parameters defined are measured in similar magnetic operation conditions and no disagreement between the parameters will exist. The inductance models generated are adequate to meet the requirements of dynamically demanding drives.
Resumo:
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making
Resumo:
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.
Resumo:
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.
Resumo:
Today´s organizations must have the ability to react to rapid changes in the market. These rapid changes cause pressure to continuously find new efficient ways to organize work practices. Increased competition requires businesses to become more effective and to pay attention to quality of management and to make people to understand their work's impact on the final result. The fundamentals in continmuois improvement are systematic and agile tackling of indentified individual process constraints and the fact tha nothin finally improves without changes. Successful continuous improvement requires management commitment, education, implementation, measurement, recognition and regeneration. These ingredients form the foundation, both for breakthrough projects and small step ongoing improvement activities. One part of the organization's management system are the quality tools, which provide systematic methodologies for identifying problems, defining their root causes, finding solutions, gathering and sorting of data, supporting decision making and implementing the changes, and many other management tasks. Organizational change management includes processes and tools for managing the people in an organizational level change. These tools include a structured approach, which can be used for effective transition of organizations through change. When combined with the understanding of change management of individuals, these tools provide a framework for managing people in change,