991 resultados para dye doped waveguide
Resumo:
For the first time, lasers have been used to induce a fast all-optical nonresonant nonlinearity at wavelengths well beyond the band edge in a GaAs/GaAlAs multiquantum well waveguide. Using a Q-switched diode laser, which gave optical pulses of 3.5 ps duration and 7 W peak power, an intensity-dependent transmission was recorded that was consistent with the presence of two photon absorption in the waveguide. The measured two photon absorption coefficient was 11 ± 2cm/GW.
Resumo:
We have investigated a resonant refractive nonlinearity in a semiconductor waveguide by measuring intensity dependent phase shifts and bias-dependent recovery times. The measurements were performed on an optimized 750-μm-long AR coated buried heterostructure MQW p-i-n waveguide with a bandedge at 1.48 μm. Figure 1 shows the experimental arrangement. The mode-locked color center laser was tuned to 50 meV beyond the bandedge and 8 ps pulses with peak incident power up to 57 W were coupled into the waveguide. Some residual bandtail absorption remains at this wavelength and this is sufficient to cause carriers to be photogenerated and these give rise to a refractive nonlinearity, predominantly by plasma and bandfilling effects. A Fabry-Perot interferometer is used to measure the spectrum of the light which exits the waveguide. The nonlinearity within the guide causes self phase modulation (SPM) of the light and a study of the spectrum allows information to be recovered on the magnitude and recovery time of the nonlinear phase shift with a reasonable degree of accuracy. SPM spectra were recorded for a variety of pulse energies coupled into he unbiased waveguide. Figure 2 shows the resultant phase shift measured from the SPM spectra as a function of pulse energy. The relationship is a linear one, indicating that no saturation of the nonlinearity occurs for coupled pulse energies up to 230 pJ. A π phase shift, the minimum necessary for an all-optical switch, is obtained for a coupled pulse energy of 57 pJ while the maximum phase shift, 4 π, was measured for 230 pJ. The SPM spectra were highly asymmetric with pulse energy shifted to higher frequencies. Such spectra are characteristic of a slow, negative nonlinearity. This relatively slow speed is expected for the unbiased guide as the recovery time will be of the order of the recombination time of the photogenerated electrons, about 1 ns for InGaAsP material. In order to reduce the recovery time of the nonlinearity, it is necessary to remove the photogenerated carriers from the waveguide by a process other than recombination. One such technique is to apply a reverse bias to the waveguide in order to sweep the carriers out. Figure 3 shows the effect on the recovery time of the nonlinearity of applying reverse bias to the waveguide for 230 pJ coupled power. The recovery time was reduced from one much longer than the length of the pulse, estimated to be about 1 ns, at zero bias to 18 ± 3 ps for a bias voltage greater than -4 V. This compares with a value of 24 ps obtained in a bulk waveguide.
Resumo:
We demonstrate the use of resonant bandfilling nonlinearity in an InGaAsP/InGaAsP Multiple Quantum Well (MQW) waveguide due to photogenerated carriers to obtain switching at pulse powers, which can readily be obtained from an erbium amplified diode laser source. In order to produce gating a polarisation rotation gate was used, which relies on an asymmetry in the nonlinear refraction on the principle axes of the waveguide.
Resumo:
The use of tapered waveguide lasers and amplifiers for enhanced picosecond pulse generation has led to order-of-magnitude peak power and pulse energy improvements. Monolithic pulse generation schemes have so far relied on a double-tapered bow-tie structure. The modeling of tapered lasers has so far been limited to steady-state operation or has lacked experimental comparison. This paper considers both experimentally and theoretically the gain-switched performance of bow-tie lasers of various taper angles. The role of transverse-mode spatial hole burning in tapered waveguide lasers is thereby investigated.
Resumo:
A dynamic beam propagation model allows design optimization of high power low divergence tapered waveguide lasers. The model is extended to include spatially-resolved temperature profiles and a temperature dependent gain. Using this model, design parameters such as the optimum facet reflectivity, taper angle, and waveguide dimension can be calculated for low far-field divergence and high continuous wave power.
Resumo:
An advanced beam propagation model was developed to show that the far field narrows with good suppression of higher order modes for an appropriate temperature rise, without significant power penalty. To verify the accuracy of the model, the dependence of far field pattern on bias conditions were assessed both experimentally and theoretically, initially under pulsed conditions to reduce thermal effects. The results highlight the optimum taper angle and the role of local heating effects.
Resumo:
A novel technique for high quality femtosecond pulse generation from a gain-switched laser diode by means of pulse compression and transformation in a compact nonlinear fiber device, based on a dispersion-imbalanced fiber loop mirror (DILM) is demonstrated. This source allows the generation of extremely high quality pulses as short as 270 fs on demand with strong suppression of pulse pedestals. Spectral filtering in arrayed waveguide grating (AWG) converts the device into a compact multiwavelength source of high-quality picosecond pulses for optical time division multiplexing/wavelength division multiplexing applications.
Resumo:
We comment on the paper by N Hari Babu et al. (2002 Supercond. Sci. Technol. 15 104-10) and point out misinterpretations of the chemical composition of U-bearing deposits observed in Y123. The observed small deposits are those of new compounds which do not contain Cu, rather than refined Y211 plus U, as stated by the authors. We further note that extensive literature, not quoted, is in disagreement by nearly an order of magnitude concerning the values of Pt and U doping at which the optimum value of Jc is obtained. Other related information, presently in the literature, which may be helpful to those working with this high temperature superconducting chemical system, is presented.
Resumo:
Melt grown Nd-Ba-Cu-O (NdBCO) has been reported to exhibit higher values of critical current density, Jc and irreversibility field, Hirr, than other (RE)BCO superconductors, such as YBCO. The microstructure of NdBCO typically contains 5-10 μm sized inclusions of the Nd4Ba2Cu2O10 phase (Nd-422) in a superconducting NdBa2Cu3O7-δ phase (Nd-123) matrix. The average size of these inclusions is characteristically larger than that of the Y2BaCuO5 (Y-211) inclusions in YBCO. As a result, there is scope to further refine the Nd-422 size to enhance Jc in NdBCO. Large grain samples of NdBCO superconductor doped with various amounts of depleted UO2 and containing excess Nd-422 have been fabricated by top seeded melt growth under reduced oxygen partial pressure. The effect of the addition of depleted UO2 on the NdBCO microstructure has been studied systematically in samples with and without added CeO2. It is observed that the addition of UO2 refines the NdBCO microstructure via the formation of uranium-containing phase particles in the superconducting matrix. These particles are of approximately spherical geometry with dimensions of around 1 μm. The average size of the nonsuperconducting phase particles in the uranium-doped microstructure is an order of magnitude less than their size in un-doped Nd-123 prepared with excess Nd-422. The critical current density of uranium-doped NdBCO is observed to increase significantly compared to the undoped material.
Resumo:
There has been a growing interest in hydrogenated silicon carbide films (SiC:H) prepared using the electron cyclotron resonance-chemical vapour deposition (ECR-CVD) technique. Using the ECR-CVD technique, SiC:H films have been prepared from a mixture of methane, silane and hydrogen, with phosphine as the doping gas. The effects of changes in the microwave power (from 150 to 900 W) on the film properties were investigated in a series of phosphorus-doped SiC:H films. In particular, the changes in the deposition rate, optical bandgap, activation energy and conductivity were investigated in conjunction with results from Raman scattering and Fourier transform infra-red (FTIR) analysis. It was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the amorphous matrix of the SiC:H films. This occurs in correspondence to a rapid increase in the conductivity and a reduction in the activation energy, both of which exhibit small variations in samples deposited at microwave powers exceeding 500 W. Analysis of IR absorption results suggests that hydrogen is bonded to silicon in the Si-H stretching mode and to carbon in the sp3 CHn rocking/wagging and bending mode in films deposited at higher microwave powers.
Resumo:
In low molar mass organosiloxane liquid-crystal materials the siloxane moieties micro-separate and aggregate in planes that could be regarded as an effective or virtual two-dimensional polymer backbone. We show that if a siloxane moiety is attached to a dichroic dye molecule, the micro-segregation of the siloxane moieties makes it possible to include a high concentration of the guest dye (more than 50%) in a host organosiloxane solution. This effect, combined with the temperature independent tilt angles achievable with ferroelectric organosiloxane liquid crystals, provide an ideal material for high-contrast surface-stabilised ferroelectric display devices. We present dyed ferroelectric materials with a temperature independent tilt angle greater than 42 degrees, a wide (room temperature to over 100°C) mesomorphic temperature range and a response time shorter than 500μs in the dye guest host mode.
Resumo:
In this work, we examine the phenomenon of random lasing from the smectic A liquid crystal phase. We summarise our results to date on random lasing from the smectic A phase including the ability to control the output from the sample using applied electric fields. In addition, diffuse random lasing is demonstrated from the electrohydrodynamic instabilities of a smectic A liquid crystal phase that has been doped with a low concentration of ionic impurities. Using a siloxane-based liquid crystal doped with ionic impurities and a laser dye, nonresonant random laser emission is observed from the highly scattering texture of the smectic A phase which is stable in zero-field. With the application of a low frequency alternating current electric field, turbulence is induced due to motion of the ions. This is accompanied by a decrease in the emission linewidth and an increase in the intensity of the laser emission. The benefit in this case is that a field is not required to maintain the texture as the scattering and homeotropic states are both stable in zero field. This offers a lower power consumption alternative to the electric-field induced static scattering sample.
Resumo:
We present a study on a series of dye guest-host mixtures using fluorescent perylene-based molecules as the guest dye in an organosiloxane host. These hosts have temperature-independent switching, at room temperature, through 90° for fields of the order of 10 Vrms/μm. Perylene molecules have been grafted onto the organosiloxane moiety via an alkyl spacer producing novel and rugged fluorescent dyes that are readily miscible in the host. Micro-separation of the low molar mass siloxane groups in the mesophases tend to form smectic phases. These planes produce an effective two-dimensional polymer backbonethat engenders the rugged mechanical properties of polymeric liquid crystals onto these low molar mass ferroelectric liquid crystals. In this study we show how the introduction of the dye molecules affects the electro-optic properties of the organosiloxane host. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group,.
Resumo:
The authors have doped RABiTS coated conductor tapes with Ca in an attempt to enhance the transport properties. By diffusing Ca into the YBCO film from a CaZrO3 overlayer, the authors have been able to preferentially dope the grain boundaries of the superconductor. Hence it has been possible to obtain doped tapes which do not have a significantly degraded T-c. The authors have measured the critical currents of doped and undoped samples over a wide range of temperature, magnetic field, and magnetic field angle in order to study the effect of Ca on the grain boundaries. The authors find that doping using short anneal times produces enhanced critical currents in large magnetic fields.