996 resultados para drug degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypoxia-inducible factor (HIF) transcription complex, which is activated by low oxygen tension, controls a diverse range of cellular processes including angiogenesis and erythropoiesis. Under normoxic conditions, the alpha subunit of HIF is rapidly degraded in a manner dependent on hydroxylation of two conserved proline residues at positions 402 and 564 in HIF-1alpha in the oxygen-dependent degradation (ODD) domain. This allows subsequent recognition by the von Hippel-Lindau (VHL) tumor suppressor protein, which targets HIF for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, prolyl hydroxylation of HIF is inhibited, allowing it to escape VHL-mediated degradation. The transcriptional regulation of the erythropoietin gene by HIF raises the possibility that HIF may play a role in disorders of erythropoiesis, such as idiopathic erythrocytosis (IE).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the use of co-melt fluidised bed granulation for the agglomeration of model pharmaceutical powders, namely, lactose mono-hydrate, PEG 10000, poly-vinyl pyrolidone and ibuprofen as a model drug. Granulation within the co-melt system was found to follow a nucleationâ??steady growthâ??coating regime profile. Using high molecular weight PEG binder, the granulation mechanism and thus the extent of granulation was found to be significantly influenced by binder viscosity. The compression properties of the granulate within the hot fluidised bed were correlated using a novel high temperature experimental procedure. It was found that the fracture stress and fractural modulus of the materials under hot processing conditions were orders of magnitude lower than those measured under ambient conditions. A range of particle velocities within the granulator were considered based on theoretical models. After an initial period of nucleation, the Stokes deformation number analysis indicated that only velocities within the high shear region of the fluidised bed were sufficient to promote significant granule deformation and therefore, coalescence. The data also indicated that larger granules de-fluidised preventing agglomeration by coalescence. Furthermore, experimental data indicated that dissipation of the viscous molten binder to the surface was the most important factor in the latter stages of the granulation process. From a pharmaceutical perspective the inclusion of the model drug, ibuprofen, combined with PVP in the co-melt process proved to be highly significant. It was found that using DSC analysis on the formulations that the decrease in the heat of fusion associated with the melting of ibuprofen within the FHMG systems may be attributed to interaction between PVP and ibuprofen through inter-molecular hydrogen bonding. This interaction decreases the crystallinity of ibuprofen and facilitates solubilisation and bioavailability within the solid matrix.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gentisate-1,2-dioxygenase genes (gdoA), with homology to a number of bacterial dioxygenases, and genes encoding a putative coenzyme A (CoA)-synthetase subunit (acdB) and a CoA-thioesterase (tieA) were identified in two haloarchaeal isolates. In Haloarcula sp. D1, gdoA was expressed during growth on 4-hydroxybenzoate but not benzoate, and acdB and tieA were not expressed during growth on any of the aromatic substrates tested. In contrast, gdoA was expressed in Haloferax sp. D1227 during growth on benzoate, 3-hydroxybenzoate, cinnamate and phenylpropionate, and both acdB and tieA were expressed during growth on benzoate, cinnamate and phenylpropionate, but not on 3-hydroxybenzoate. This pattern of induction is consistent with these genes encoding steps in a CoA-mediated benzoate pathway in this strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A side-effect of treatment with antipsychotic drugs for schizophrenia is increased body fat, which leads to further morbidity and poor adherence to treatment. The 5-hydroxytryptamine 2C receptor (5-HT2C) has been associated with this effect; we aimed to establish whether a genetic polymorphism of the promoter region of this receptor affects weight gain after drug treatment in first-episode patients with schizophrenia. We noted significantly less weight gain in patients with the -759T variant allele (p=0.0003) than in those without this allele, who were more likely to have substantial (>7%) weight gain (p=0.002). We have identified a genetic factor that is associated with antipsychotic drug-induced weight gain.