967 resultados para district heat energy production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excess of sugarcane bagasse (SCB) from the sugar-alcohol industry is considered a by-product with great potential for many bioproducts production. This work had as objective to verify the performance of sugarcane bagasse hemicellulosic hydrolysate (SCBHH) as source of sugars for enzymatic or in vitro xylitol production. For this purpose, xylitol enzymatic production was evaluated using different concentrations of treated SCBHH in the commercial reaction media. The weak acid hydrolysis of SCB provided a hydrolysate with 18 g L(-1) and 6 g L(-1) of xylose and glucose, respectively. Considering the reactions, changes at xylose xylitol conversion efficiency and volumetric productivity in xylitol were not observed for the control experiment and using 20 and 40% v.v (1) of SCBHH in the reaction media. The conversion efficiency achieved 100% in all the experiments tested. The results showed that treated SCBHH is suitable as xylose and glucose source for the enzymatic xylitol production and that this process has potential as an alternative for traditional xylitol production ways. (C) 2011 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Xylitol is a sugar alcohol (polyalcohol) with many interesting properties for pharmaceutical and food products. It is currently produced by a chemical process, which has some disadvantages such as high energy requirement. Therefore microbiological production of xylitol has been studied as an alternative, but its viability is dependent on optimisation of the fermentation variables. Among these, aeration is fundamental, because xylitol is produced only under adequate oxygen availability. In most experiments with xylitol-producing yeasts, low oxygen transfer volumetric coefficient (K(L)a) values are used to maintain microaerobic conditions. However, in the present study the use of relatively high K(L)a values resulted in high xylitol production. The effect of aeration was also evaluated via the profiles of xylose reductase (XR) and xylitol clehydrogenase (XD) activities during the experiments. RESULTS: The highest XR specific activity (1.45 +/- 0.21 U mg(protein)(-1)) was achieved during the experiment with the lowest K(L)a value (12 h(-1)), while the highest XD specific activity (0.19 +/- 0.03 U mg(protein)(-1)) was observed with a K(L)a value of 25 h(-1). Xylitol production was enhanced when K(L)a was increased from 12 to 50 h(-1), which resulted in the best condition observed, corresponding to a xylitol volumetric productivity of 1.50 +/- 0.08 g(xylitol) L(-1) h(-1) and an efficiency of 71 +/- 6.0%. CONCLUSION: The results showed that the enzyme activities during xylitol bioproduction depend greatly on the initial KLa value (oxygen availability). This finding supplies important information for further studies in molecular biology and genetic engineering aimed at improving xylitol bioproduction. (C) 2008 Society of Chemical Industry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cheese whey powder (CWP) is an attractive raw material for ethanol production since it is a dried and concentrated form of CW and contains lactose in addition to nitrogen, phosphate and other essential nutrients. In the present work, deproteinized CWP was utilized as fermentation medium for ethanol production by Kluyveromyces fragilis. The individual and combined effects of initial lactose concentration (50-150 kg m(-3)), temperature (25-35 degrees C) and inoculum concentration (1-3 kg m(-3)) were investigated through a 2(3) full-factorial central composite design, and the optimal conditions for maximizing the ethanol production were determined. According to the statistical analysis, in the studied range of values, only the initial lactose concentration had a significant effect on ethanol production, resulting in higher product formation as the initial substrate concentration was increased. Assays with initial lactose concentration varying from 150 to 250 kg m(-3) were thus performed and revealed that the use of 200 kg m(-3) initial lactose concentration, inoculum concentration of 1 kg m(-3) and temperature of 35 degrees C were the best conditions for maximizing the ethanol production from CWP solution. Under these conditions, 80.95 kg m(-3) of ethanol was obtained after 44 h of fermentation. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a thermoeconomic optimization methodology for the analysis and design of energy systems. This methodology involves economic aspects related to the exergy conception, in order to develop a tool to assist the equipment selection, operation mode choice as well as to optimize the thermal plants design. It also presents the concepts related to exergy in a general scope and in thermoeconomics which combines the thermal sciences principles (thermodynamics, heat transfer, and fluid mechanics) and the economic engineering in order to rationalize energy systems investment decisions, development and operation. Even in this paper, it develops a thermoeconomic methodology through the use of a simple mathematical model, involving thermodynamics parameters and costs evaluation, also defining the objective function as the exergetic production cost. The optimization problem evaluation is developed for two energy systems. First is applied to a steam compression refrigeration system and then to a cogeneration system using backpressure steam turbine. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MgB(2) is considered to be an important conductor for applications. Optimizing flux pinning in these conductors can improve their critical currents. Doping can influence flux pinning efficiency and grain connectivity, and also affect the resistivity, upper critical field and critical temperature. This study was designed to attempt the doping of MgB(2) on the Mg sites with metal-diborides using high-energy ball milling. MgB(2) samples were prepared by milling pre-reacted MgB(2) and TaB(2) powders using a Spex 8000M mill with WC jars and balls in a nitrogen-filled glove box. The mixing concentration in (Mg(1-x)Ta(x))B(2) was up to x = 0.10. Samples were removed from the WC jars after milling times up to 4000 minutes and formed into pellets using cold isostatic pressing. The pellets were heat treated in a hot isostatic press (HIP) at 1000 degrees C under a pressure of 30 kpsi for 24 hours. The influence that milling time and TaB(2) addition had on the microstructure and the resulting superconducting properties of TaB(2)-added MgB(2) is discussed. Improvement J(c) of at high magnetic fields and of pinning could be obtained in milled samples with added TaB(2) The sample with added 5at.% TaB(2) and milled for 300 minutes showed values of J(c) similar to 7 x 10(5) A/cm(2) and F(p) similar to 14 GN/m(3) at 2T, 4.2 K. The milled and TaB(2)-mixed samples showed higher values of mu(0)H(irr) than the unmilled-unmixed sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Refractory castables are composed of fractions of fine to fairly coarse particles. The fine fraction is constituted primarily of raw materials and calcium aluminate cement, which becomes hydrated, forming chemical bonds that stiffen the concrete during the curing process. The present study focused on an evaluation of several characteristics of two refractory castables with similar chemical compositions but containing aggregates of different sizes. The features evaluated were the maximum load, the fracture energy, and the ""relative crack-propagation work"" of the two castables heat-treated at 110, 650, 1100 and 1550 degrees C. The results enabled us to draw the following conclusions: the heat treatment temperature exerts a significant influence on the matrix/aggregate interaction, different microstructures form in the castables with temperature, and a relationship was noted between the maximum load and the fracture energy. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool`s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole`s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool-workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 degrees C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2) mol(-1) glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the influence of different carbon sources and the carbon/nitrogen ratio (C/N) on the production and main composition of insoluble extracellular polymers (EPS) produced in an anaerobic sequencing batch biofilm reactor (ASBBR) with immobilized biomass in polyurethane foam. The yield of EPS was 23.6 mg/g carbon, 13.3 mg/g carbon, 9.0 mg/g carbon and 1.4 mg/g carbon when the reactor was fed with glucose, soybean oil. fat acids, and meat extract, respectively. The yield of EPS decreased from 23.6 to 2.6 mg/g carbon as the C/N ratio was decreased from 13.6 to 3.4 gC/gN, using glucose as carbon source. EPS production was not observed under strict anaerobic conditions. The results suggest that the carbon source, microaerophilic conditions and high C/N ratio favor EPS production in the ASBBR used for wastewater treatment. Cellulose was the main exopolysaccharide observed in all experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of hydrogen from soft-drink wastewater in two upflow anaerobic packed-bed reactors was evaluated. The results show that soft-drink wastewater is a good source for hydrogen generation. Data from both reactors indicate that the reactor without medium containing macro- and micronutrients (R2) provided a higher hydrogen yield (3.5 mol H(2) mol(-1) of sucrose) as compared to the reactor (R1) with a nutrient-containing medium (3.3 mol H(2) mol(-1) of sucrose). Reactor R2 continuously produced hydrogen, whereas reactor R1 exhibited a short period of production and produced lower amounts of hydrogen. Better hydrogen production rates and percentages of biogas were also observed for reactor R2, which produced 0.4 L h(-1) L(-1) and 15.8% of H(2), compared to reactor R1, which produced 0.2 L h(-1) L(-1) and 2.6% of H(2). The difference in performance between the reactors was likely due to changes in the metabolic pathway for hydrogen production and decreases in bed porosity as a result of excessive biomass growth in reactor R1. Molecular biological analyses of samples from reactors R1 and R2 indicated the presence of several microorganisms, including Clostridium (91% similarity), Enterobacter (93% similarity) and Klebsiella (97% similarity). Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the feasibility of an anaerobic bioreactor for treating low contents of organic matter to generate organic acids and hydrogen. The device employed for this purpose was a horizontal packed-bed bioreactor fed with glucose-based synthetic wastewater and operated with hydraulic retention times from 0.5 to 2 h. A microbial biofilm was developed without previous inoculation, using expanded clay beads (4.8-6.3 mm) as support material. Alkalinity was found to be the main parameter affecting the production of hydrogen and organic acids, and the system produced optimal output when operating without a buffer agent. The average hydrogen production was 2.48, 2.15 and 1.81 molH(2) mol(-1) of glucose for NaHCO3 influent concentrations of 0, 1000 and 2000 mg L-1, respectively. The operational regime of the bioreactor, the support material and the controlled alkalinity were effective in selecting and immobilizing microbial fermenting biofilms, which successfully produced hydrogen and organic acids throughout the operating period. Exploratory assays indicated the feasibility of organic acid extraction using an anionic polymeric resin. (C) 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S. Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S. Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee la. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO(2)e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO(2)e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009:34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO(2)e/MJ. Thus, avoided life Cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated two different support materials (polystyrene and expanded clay) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBRs contained either polystyrene (R1) or expanded clay (R2) as support materials were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C and a pH of approximately 5.5. The AFBRs were operated with a range of hydraulic retention times (HRTs) between 1 and 8 h. For R1 with an HRT of 2 h, the maximum hydrogen yield (HY) was 1.90 mol H(2) mol(-1) glucose, with 0.805 mg of biomass (as total volatile solids, or TVS) attached to each g of polystyrene. For R2 operated at an HRT of 2 h, the maximum HY was 2.59 mol H(2) moll glucose, with 1.100 mg of attached biomass (as TVS) g(-1) expanded clay. The highest hydrogen production rates (HPR) were 0.95 and 1.21 L h(-1) L(-1) for R1 and R2, respectively, using an HRT of 1 h. The H(2) content increased from 16-47% for R1 and from 22-51% for R2. No methane was detected in the biogas produced throughout the period of AFBR operation. These results show that the values of HY, HPR, H(2) content, and g of attached biomass g(-1) support material were all higher for AFBRs containing expanded clay than for reactors containing polystyrene. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.