949 resultados para dihedral corner reflector


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is the result of a piece of research on hospitality social representations between tourism professionals and academics in the city of Natal. The reasearch s corner stone is the point of the view that the notion of hospitality, with all its theoretical and practical implications, is essential to the success of any tourist destination. Is there any relevance in the growing use of the word, almost as a synonym for tourism? How is this notion, first learned in the domestic context and then exercised in the contact with the city and especially with visitors, represented in the learning process for professional practice and in the exercise of professional tourist reception itself? In order to answer this question, initially we chose to study the concept of hospitality in their current academic view, with reference to the French school, which binds hospitality to the maussian perspective of donation, and other scholars of the current theme, with emphasis on the research performed in the program of Master of Hospitality at the Anhembi Morumbi University, whose philosophy imprints in the hospitality concept the same sense we want to give this study. Then we chose to analyze the notion of hospitality, by the Social Representations Theory, in light of Moscovici s methodology, as well as the analysis of the core of this concept among tourism professionals and students. It was found that hospitality is still a very diffuse reference to representations of these two groups and that academic education, if accepted both theoretical and practical implications of this research s starting point, will still have a long way to go. Cities such as Natal, "naturally" hospitable, according to its dwellers, where tourism is relevant to their economies, need (re)thinking and (re)organizing, continuously, their actions towards quality and performance of their professional training especially those concerned with receptive structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to show how the application of frequency selective surfaces (FSS) in planar antenna arrays become an alternative to obtain desired radiation characteristics from changes in radiation parameters of the arrays, such as bandwidth, gain and directivity. In addition to analyzing these parameters is also made a study of the mutual coupling between the elements of the array. To accomplish this study, were designed a microstrip antenna array with two patch elements, fed by a network feed. Another change made in the array was the use of the truncated ground plane, with the objective of increasing the bandwidth and miniaturize the elements of the array. In order to study the behavior of frequency selective surfaces applied in antenna arrays, three different layouts were proposed. The first layout uses the FSS as a superstrate (above the array). The second layout uses the FSS as reflector element (below the array). The third layout is placed between two FSS. Numerical and experimental results for each of the proposed configurations are presented in order to validate the research

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is presented a solar cooker made with a parabolic reflector composed by a composite material. For this purpose, it was utilized a cast concrete with a parabolic profile obtained by means of modeling. It will be demonstrated the manufacturing process and settings, as well as tests results, in order to determine the contact temperature and cooking time of some foods. This solar cooker presents the following main characteristics: the concentration method, low cost and easy manufacturing process. It was performed by employing recycled materials such as cement, plaster, crushed polystyrene and wheels. The captation area measures 1 square meter and its parabole was covered with a mirrors measuring 25 cm2. A temperature higher than 650°C was obtained. Furthermore, it has been demonstrated that the cooking viability for several type of foods such as beans, potatoes, rice, yams and pasta can be used in two meals for a family of four. In addition, the advantages of this cooker were analysed in comparison with others described in literature as well as those operating on gas. Especially in Northeast of Brazil, where there is a potential for solar energy, this prototype is an important tool, because it avoids not only desertification, but also pollutants from burning firewoods which cause ecological imbalance