984 resultados para delta N-15
Resumo:
Mo surface species of molybdenum nitride and their changes under sulfiding conditions were investigated by XRD and XPS. Mo2N was synthesized by temperature-programmed reaction of MoO3, with NH3. The decomposition of the Mo3d spectra gave a Mo3d doubler which corresponded to Modelta+ (2 less than or equal to delta < 4), Mo4+ and Mo5+ Or Mo6+ species. The BE of the Mo species of passivated Mo2N shifted to higher energy level compared with the freshly prepared Mo2N due to the oxidation of Mo nitride during passivation. When Mo2N was contacted for 4 h with a 15% H2S-H-2 mixture at 400 degrees C, the XRD spectra did not reveal any new phase, which indicates a high stability of Mo2N against sulfidation, but XPS data showed the presence of sulfur, including S-0 and S2- species, and a decrease of the N/Mo atomic ratio revealed some changes in surface composition. More than one monolayer of Mo2N was transformed to sulfide. It is probable that the oxygen incorporated during passivation reacted with sulfur and formed a thin layer of molybdenum sulfide on the Mo2N surface. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
1984
Resumo:
Iron-substituted SBA-15 (Fe-SBA-15) materials have been synthesized via a simple direct hydrothermal method under weak acidic conditions. The powder X-ray diffraction (XRD), NZ sorption and transmission electron microscopy (TEM) characterizations show that the resultant materials have well-ordered hexagonal meso-structures. The diffused reflectance UV-vis and UV resonance Raman spectroscopy characterizations show that most of the iron ions exist as isolated framework species for calcined materials when the Fe/Si molar ratios are below 0.01 in the gel. The presence of iron species also has significant salt effects that can greatly improve the ordering of the mesoporous structure. Different iron species including isolated framework iron species, extraframework iron clusters and iron oxides are formed selectively by adjusting the pH values of the synthesis solutions and Fe/Si molar ratios. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The molar heat capacities of 2-(chloromethylthio)benzothiazole (molecular formula C8H6ClNS2, CA registry no. 28908-00-1) were measured with an adiabatic calorimeter in the temperature range between (80 and 350) K. The construction and procedures of the calorimeter were described in detail. The performance of the calorimetric apparatus was evaluated by heat capacity measurements on alpha-Al2O3. The deviation of experiment heat capacities from the corresponding smoothed values lies within 0.3%, whereas the uncertainty is within +/-0.5%, compared with that of the recommended reference data over the whole experimental temperature range. A fusion transition was found from the C-p-T curve of 2-(chloromethylthio)benzothiazole. The melting temperature and the molar enthalpy and entropy of fusion of the compound were determined to be T-m = (315.11 +/- 0.04) K, Delta(fus)H(m) = (17.02 +/- 0.03) kJ(.)mol(-1), and Delta(fus)S(m) = (54.04 +/- 0.05) J(.)mol(-1.)K(-1), respectively. The thermodynamic functions (H-T - H-298.15) and (S-T - S-298.15) were also derived from the heat capacity data. The molar fraction purity of the 2-(chloromethylthio)benzothiazole sample used in the present calorimetric study was determined to be 99.21 by fraction melting.
Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores
Resumo:
Highly ordered SBA-15 silicas with large cylindrical mesopores (similar to 15 nm) are successfully obtained with the help of NH4F by controlling the initial reaction temperatures in the presence of excess amounts of alkanes.
Resumo:
Copper nanoparticles were deposited onto mesoporous SBA-15 support via two different routes: post-grafting method and incipient wet impregnation method. Both XRD and TEM reveal that the post-grafting can make Cu particles very small in size and highly dispersed into channels of SBA-15, while the impregnation method mainly forms large Cu particles on the external surface of SBA-15. TPR experiments show that CuO species formed by the post-grafting method is more reducible than that prepared by the impregnation method. The catalytic activity tests for CO oxidation manifests that the sample prepared by the post-grafting method has a much higher activity than that prepared by the impregnation method, with a lowering of 50 degrees C for T-50, showing a strong dependence of catalytic activity on the size and dispersion of Cu particles. Besides the preparation procedure, other factors including calcination temperature, reduction treatment, copper loading as well as the feed composition, have an important effect on the catalytic activity. The best performance was obtained when the catalyst was calcined at 500 degrees C and reduced at 550 degrees C. The calcination and reduction treatment at high temperature have been found to be necessary to completely remove the organic residue and to generate active metallic copper particles. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
2009
Resumo:
A new mesoporous sphere-like SBA-15 silica was synthesized and evaluated in terms of its suitability as stationary phases for CEC. The unique and attractive properties of the silica particle are its submicrometer particle size of 400 nm and highly ordered cylindrical mesopores with uniform pore size of 12 nm running along the same direction. The bare silica particles with submicrometer size have been successfully employed for the normal-phase electrochromatographic separation of polar compounds with high efficiency (e.g., 210 000 for thiourea), which is matched well with its submicrometer particle size. The Van Deemeter plot showed the hindrance to mass transfer because of the existence of pore structure. The lowest plate height of 2.0 mu m was obtained at the linear velocity of 1.1 mm/s. On the other hand, because of the relatively high linear velocity (e.g., 4.0 mm/s) can be generated, high-speed separation of neutral compounds, anilines, and basic pharmaceuticals in CEC with C-18-modified SBA-15 silica as stationary phases was achieved within 36, 60, and 34 s, respectively.
Resumo:
For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally. (c) 2005 American Institute of Physics.
Resumo:
Este trabalho visa orientar os produtores e técnicos que têm interesse em formar novos rebanhos com fêmeas acasaladas aos 15 ou 18 meses de idade. Tais orientações, no entanto, só serão válidas quando outros aspectos de manejo forem também observados, tais como: controle sanitário eficiente, estação de monta bem definida, controle adequado da qualidade e quantidade de pastagem disponível, etc.
Resumo:
2015
Resumo:
2015