975 resultados para delta 15N, organic matter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is generally a lack of knowledge on how marine organic carbon accumulation is linked to vertical export and primary productivity patterns. In this study, a multi-proxy geochemical and organic-sedimentological approach is coupled with organic facies modelling focusing on regional calculations of carbon cycling and carbon burial on the western Barents Shelf between northern Scandinavia and Svalbard. OF-Mod 3D, an organic facies modelling software tool, is used to reconstruct the marine and terrestrial organic carbon fractions and to make inferences about marine primary productivity in this region. The model is calibrated with an extensive sample dataset and reproduces the present-day regional distribution of the organic carbon fractions well. Based on this new organic facies model, we present regional carbon mass accumulation rate calculations for the western Barents Sea. The calibration dataset includes location and water depth, sand fraction, organic carbon and nitrogen data and calculated marine and terrestrial organic carbon fractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration and carbon isotopic composition (d13C) of sedimentary organic carbon (C_org), N/C ratios, and terrigenous and marine d13C_org endmembers form a basis from which to address problems of Late Quaternary glacial-interglacial climatic variability in a 208.7 m hydraulic piston core (DSDP 619) from the Pigmy Basin in the northern Gulf of Mexico. While interpretations of sedimentary d13C_org time series records are often not unique, paired analyses of d13C_org and N/C are consistent with the hypothesis that the C_org in the Pigmy Basin is a climatically determined mixture of C3-photosynthetic terrigenous and marine organic matter, confirming the earlier d13C_org model of Sackett (1964). A high resolution (~1.4-2.9 Ka/sample) d13C_org record shows that sedimentary organic carbon in interglacial oxygen isotope (sub)stages 1 and 5a-b are enriched in 13C (average +/-1 sigma values are -24.2+/-1.2? and -22.9+/-0.7? relative to PDB, respectively) while glacial isotope stage values 2 are relatively depleted (-25.6+/-0.5?). Concentrations of terrigenous and marine sedimentary organic carbon are calculated for the first time using d13C_org and C_org measurements, and empirically determined terrigenous and marine d13C_org endmembers. The net accumulation rate of terrigenous organic carbon is 4.3+/-2.6 times higher in isotope stages 2-4 than in (sub)stages 1 and 5a-b, recording higher erosion rates of terrigenous organic material in glacial times. The concentration and net accumulation rates of marine and terrigenous C_org suggest that the nutrient-bearing plume of the Mississippi River may have advanced and retreated across the Pigmy Basin as sea level fell and rose in response to glacial-interglacial sea level change.