980 resultados para counter current chromatography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a high current impedance matching method for narrowband power-line communication (NPLC) systems. The impedance of the power-line channel is time and location variant; therefore, coupling circuitry and the channel are not usually matched. This not only results in poor signal integrity at the receiving end, but also leads to a higher transmission power requirement to secure the communication process. To offset this negative effect, a high-current adaptive impedance circuit to enable impedance matching in power-line networks is reported. The approach taken is to match the channel impedance of N-PLC systems is based on the General Impedance Converter (GIC). In order to achieve high current a special coupler in which the inductive impedance can be altered by adjusting a microcontroller controlled digital resistor is demonstrated. It is shown that the coupler works well with heavy load current in power line networks. It works in both low and high transmitting current modes, a current as high as 760 mA has been obtained. Besides, compared with other adaptive impedance couplers, the advantages include higher matching resolution and a simple control interface. Experimental results are presented to demonstrate the operation of the coupler. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new way to perform hydrodynamic chromatography (HDC) for the size separation of particles based on a unique recirculating flow pattern. Pressure-driven (PF) and electro-osmotic flows (EOF) are opposed in narrow glass microchannels that expand at both ends. The resulting bidirectional flow turns into recirculating flow because of nonuniform microchannel dimensions. This hydrodynamic effect, combined with the electrokinetic migration of the particles themselves, results in a trapping phenomenon, which we have termed flow-induced electrokinetic trapping (FIET). In this paper, we exploit recirculating flow and FIET to perform a size-based separation of samples of microparticles trapped in a short separation channel using a HDC approach. Because these particles have the same charge (same zeta potential), they exhibit the same electrophoretic mobility, but they can be separated according to size in the recirculating flow. While trapped, particles have a net drift velocity toward the low-pressure end of the channel. When, because of a change in the externally applied PF or electric field, the sign of the net drift velocity reverses, particles can escape the separation channel in the direction of EOF. Larger particles exhibit a larger net drift velocity opposing EOF, so that the smaller particles escape the separation channel first. In the example presented here, a sample plug containing 2.33 and 2.82 microm polymer particles was introduced from the inlet into a 3-mm-long separation channel and trapped. Through tuning of the electric field with respect to the applied PF, the particles could be separated, with the advantage that larger particles remained trapped. The separation of particles with less than 500 nm differences in diameter was performed with an analytical resolution comparable to that of baseline separation in chromatography. When the sample was not trapped in the separation channel but located further downstream, separations could be carried out continuously rather than in batch. Smaller particles could successfully pass through the separation channel, and particles were separated by size. One of the main advantages of exploiting FIET for HDC is that this method can be applied in quite short (a few millimeters) channel geometries. This is in great contrast to examples published to date for the separation of nanoparticles in much longer micro- and nanochannels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies by Enfield and Allen (1980), McLain et al (1985), and others have shown that anomalously warm years in the northern coastal California Current correspond to El Niño conditions in the equatorial Pacific Ocean. Ocean model studies suggest a mechanical link between the northern coastal California Current and the equatorial ocean through long waves that propagate cyclonically along the ocean boundary (McCreary 1976; Clarke 1983; Shriver et al 1991). However, distinct observational evidence of such an oceanic connection is not extensive. Much of the supposed El Niño variation in temperature and sea level data from the coastal California Current region can be associated with the effects of anomalously intense north Pacific atmospheric cyclogenesis, which is frequently augmented during El Niño years (Wallace and Gutzler 1981; Simpson 1983; Emery and Hamilton 1984). This study uses time series of ocean temperature data to distinguish between locally forced effects, initiated by north Pacific atmospheric changes, and remotely forced effects, initiated by equatorial Pacific atmospheric changes related to El Niño events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA/NCCOS is conducting the following work for the NOAA California Current Integrated Ecosystem Assessment, in support of the NOAA/NMFS Northwest Fisheries Science Center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information is summarized on juvenile salmonid distribution, size, condition, growth, stock origin, and species and environmental associations from June and August 2000 GLOBEC cruises with particular emphasis on differences related to the regions north and south of Cape Blanco off Southern Oregon. Juvenile salmon were more abundant during the August cruise as compared to the June cruise and were mainly distributed northward from Cape Blanco. There were distinct differences in distribution patterns between salmon species: chinook salmon were found close inshore in cooler water all along the coast and coho salmon were rarely found south of Cape Blanco. Distance offshore and temperature were the dominant explanatory variables related to coho and chinook salmon distribution. The nekton assemblages differed significantly between cruises. The June cruise was dominated by juvenile rockfishes, rex sole, and sablefish, which were almost completely absent in August. The forage fish community during June comprised Pacific herring and whitebait smelt north of Cape Blanco and surf smelt south of Cape Blanco. The fish community in August was dominated by Pacific sardines and highly migratory pelagic species. Estimated growth rates of juvenile coho salmon were higher in the GLOBEC study area than in areas farther north. An unusually high percentage of coho salmon in the study area were precocious males. Significant differences in growth and condition of juvenile coho salmon indicated different oceanographic environments north and south of Cape Blanco. The condition index was higher in juvenile coho salmon to the north but no significant differences were found for yearling chinook salmon. Genetic mixed stock analysis indicated that during June, most of the Chinook salmon in our sample originated from rivers along the central coast of Oregon. In August, chinook salmon sampled south of Cape Blanco were largely from southern Oregon and northern California; whereas most chinook salmon north of Cape Blanco were from the Central Valley in California.