956 resultados para connective tissue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: An arteriovenous loop (AVL) enclosed in a polycarbonate chamber in vivo, produces a fibrin exudate which acts as a provisional matrix for the development of a tissue engineered microcirculatory network. Objectives: By administering enoxaparin sodium - an inhibitor of fibrin polymerization, the significance of fibrin scaffold formation on AVL construct size (including the AVL, fibrin scaffold, and new tissue growth into the fibrin), growth, and vascularization were assessed and compared to controls. Methods: In Sprague Dawley rats, an AVL was created on femoral vessels and inserted into a polycarbonate chamber in the groin in 3 control groups (Series I) and 3 experimental groups (Series II). Two hours before surgery and 6 hours post-surgery, saline (Series I) or enoxaparin sodium (0.6 mg/kg, Series II) was administered intra-peritoneally. Thereafter, the rats were injected daily with saline (Series I) or enoxaparin sodium (1.5 mg/kg, Series II) until construct retrieval at 3, 10, or 21 days. The retrieved constructs underwent weight and volume measurements, and morphologic/morphometric analysis of new tissue components. Results: Enoxaparin sodium treatment resulted in the development of smaller AVL constructs at 3, 10, and 21 days. Construct weight and volume were significantly reduced at 10 days (control weight 0.337 ± 0.016 g [Mean ± SEM] vs treated 0.228 ± 0.048, [P < .001]: control volume 0.317 ± 0.015 mL vs treated 0.184 ± 0.039 mL [P < .01]) and 21 days (control weight 0.306 ± 0.053 g vs treated 0.198 ± 0.043 g [P < .01]: control volume 0.285 ± 0.047 mL vs treated 0.148 ± 0.041 mL, [P < .01]). Angiogenesis was delayed in the enoxaparin sodium-treated constructs with the absolute vascular volume significantly decreased at 10 days (control vascular volume 0.029 ± 0.03 mL vs treated 0.012 ± 0.002 mL [P < .05]). Conclusion: In this in vivo tissue engineering model, endogenous, extra-vascularly deposited fibrin volume determines construct size and vascular growth in the first 3 weeks and is, therefore, critical to full construct development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recently described model for tissue engineering, an arteriovenous loop comprising the femoral artery and vein with interposed vein graft is fabricated in the groin of an adult male rat, placed inside a polycarbonate chamber, and incubated subcutaneously. New vascularized granulation tissue will generate on this loop for up to 12 weeks. In the study described in this paper three different extracellular matrices were investigated for their ability to accelerate the amount of tissue generated compared with a no-matrix control. Poly-D,L-lactic-co-glycolic acid (PLGA) produced the maximal weight of new tissue and vascularization and this peaked at two weeks, but regressed by four weeks. Matrigel was next best. It peaked at four weeks but by eight weeks it also had regressed. Fibrin (20 and 80 mg/ml), by contrast, did not integrate with the generating vascularized tissue and produced less weight and volume of tissue than controls without matrix. The limiting factors to growth appear to be the chamber size and the capacity of the neotissue to integrate with the matrix. Once the sides of the chamber are reached or tissue fails to integrate, encapsulation and regression follow. The intrinsic position of the blood supply within the neotissue has many advantages for tissue and organ engineering, such as ability to seed the construct with stem cells and microsurgically transfer new tissue to another site within the individual. In conclusion, this study has found that PLGA and Matrigel are the best matrices for the rapid growth of new vascularized tissue suitable for replantation or transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of second harmonic generation (SHG) from hyperplastic parenchyma and stroma in maligant human prostate tissue on excitation wavelengths was measured. A femtosecond pulsed laser, a scanning microscope and a spectrograph were used to perform the measurements. The spectra were measured under excitation power of 10 mW at excitation wavelengths of 730 nm, 750 nm, 800 nm, 850 nm and 890 nm. Analysis suggested that the SHG in prostate tissue is highly structured and wavelength dependent signifying its ability to be used as an indicator for recognizing tissue components, ultrastructures, micro-environments and diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of vascularization in 3-D tissue engineering was studied. Mouse fat, angiogenic growth factors, adult human stem cells and fat tissue have been inserted and subsequent tissue growth was monitored. Human fat grafts or human lipoaspirates in SCID mouse chambers induced mouse fat generation at 6 weeks. Tissue engineering models utilizing intrinsic vascularization have major advantages including rapid and appropriate vascularization of new tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering adipogenic tissue in vivo requires the concomitant induction of angiogenesis to generate a stable long-term three-dimensional construct. Histiocon-ductive tissue engineering strategies have been used. The disadvantage of using biodegradable scaffolds is a delayed angiogenic induction resulting in ischemic necrosis of the central cell population in the scaffold. We evaluated an histioinductive approach for adipose tissue engineering by combining essential key components for adipogenic induction: (1) a precursor cell source; (2) a vascular pedicle; (3) a supportive matrix, and; (4) a chamber to preserve space for the new tissue to develop. We observed concomitant adipogenic and angiogenic induction after 6 weeks in three-dimensional adipose tissue constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary goal in hard tissue engineering is to combine high-performance scaffold materials with living cells to develop biologically active substitutes that can restore tissue functions. This requires relevant knowledge in multidisciplinary fields encompassing chemical engineering, material science, chemistry, biology and nanotechnology. Here we present an overview on the recent progress of how two representative carbon nanostructures, namely, carbon nanotubes and graphene, aid and advance the research in hard tissue engineering. The article focuses on the advantages and challenges of integrating these carbon nanostructures into functional scaffolds for repairing and regenerative purposes. It includes, but is not limited to, the critical physico-chemical properties of carbon nanomaterials for enhanced cell interactions such as adhesion, morphogenesis, proliferation and differentiation; the novel designs of two- and three-dimensional nanostructured scaffolds; multifunctional hybrid materials; and the biocompatible aspects of carbon nanotubes and graphene. Perspectives on the future research directions are also given, in an attempt to shed light on the innovative and rational design of more effective biomedical devices in hard tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using retinal imaging, the nature and extent of compromise of retinal structural integrity has been characterized in individuals suffering from diabetic peripheral neuropathy. These findings extend our understanding of the pathological processes involved in diabetic neuropathy and offer novel ophthalmic approaches to the diagnosis and monitoring of this debilitating condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drying is a key processing techniques used in food engineering which demands continual developments on advanced analysis techniques in order to optimize the product and the process. In this regard, plant based materials are a frequent subject of interest where microstructural studies can provide a clearer understanding on the fundamental physical mechanisms involved. In this context, considering numerous challenges of using conventional numerical grid-based modelling techniques, a meshfree particle based model was developed to simulate extreme deformations of plant microstructure during drying. The proposed technique is based on a particle based meshfree method: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). A tissue model was developed by aggrading individual cells modelled with SPH-DEM coupled approach by initializing the cells as hexagons and aggregating them to form a tissue. The model also involves a middle lamella resembling real tissues. Using the model, different dried tissue states were simulated with different moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model is capable of simulating plant tissues at lower moisture contents which results in excessive shrinkage and cell wall wrinkling. Model predictions were compared with experimental findings and a fairly good agreement was observed both qualitatively and quantitatively.