972 resultados para conductive textiles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) fibers with unexpected elasticity were prepared by a modified core-shell electrospinning method using a commercially-available liquid PDMS precursor (Sylgard 184) and polyvinylpyrrolidone (PVP) as core and sheath materials, respectively. The liquid PDMS precursor was crosslinked in situ to form a solid core when the newly-electrospun core-sheath nanofibers were deposited onto a hot-plate electrode collector. After dissolving the PVP sheath layer off the fibers, net PDMS fibers showed larger average diameter than core-sheath fibers, with an average diameter around 1.35 μm. The tensile properties of both single fibers and fibrous mats were measured. Single PDMS fibers had a tensile strength and elongation at break of 6.0 MPa and 212%, respectively, which were higher than those of PDMS cast film (4.9 MPa, 93%). The PDMS fiber mat had larger elongation at break than the single PDMS fibers, which can be drawn up to 403% their original length. Cyclic loading tests indicated a Mullin effect on the PDMS fiber mats. Such a superior elastic feature was attributed to the PDMS molecular orientation within fibers and the randomly-orientated fibrous structure. Highly-elastic, ultrafine PDMS fibers may find applications in strain sensors, biomedical engineering, wound healing, filtration, catalysis, and functional textiles. © The Royal Society of Chemistry 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an electrical double layer capacitor, dry-spun carbon nanotube yarn possesses relatively low specific capacitance. This can be significantly increased as a result of the pseudocapacitance of functional groups on the carbon nanotubes developed by oxidation using a gamma irradiation treatment in the presence of air. When coated with high-performance polyaniline nanowires, the gamma-irradiated carbon nanotube yarn acts as a high-strength reinforcement and a high-efficiency current collector in two-ply yarn supercapacitors for transporting charges generated along the long electrodes. The resulting supercapacitors demonstrate excellent electrochemical performance, cycle stability, and resistance to folding-unfolding that are required in wearable electronic textiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass production of nanofibers is crucial in both laboratory research and industry application of nanofibers. In this study, multiple ring spinnerets have been used to generate needleless electrospinning. Multiple polymer jets were produced from the top of each ring in the spinning process, resulting in thin and uniform nanofibers. Production rate of nanofibers increased gradually with the increase of the number of rings in the spinneret. Spinning performance of multiple ring electrospinning, namely the quality and production rate of the as-spun nanofibers, was dependent on experimental parameters like applied voltage and polymer concentration. Electric field analysis of multiple ring showed that high concentrated electric field was formed on the surface of each ring. Fiber diameter together with production rate of needleless electrospinning was dependent on the strength and distribution of the electric field of the spinneret. Needleless electrospinning from multiple ring can be further applied in both laboratory research and industry where large amount of nanofibers must be employed simultaneously. © 2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein fibre wastes from animal hairs, feathers and insect secreted filaments can be aptly utilized by converting them into ultra-fine particles. Particles from animal protein fibres present large surface-to-weight ratio and significantly enhanced surface reactivity, that have opened up novel applications in both textile and non-textile fields. This review article summarizes the state-of-the-art routes to fabricate ultrafine particles from animal protein fibres, including direct route of mechanical milling of fibres and indirect route from fibre proteins. Ongoing research trends in novel applications of protein fibre particles in various fields, such as biomedical science, environmental protection and composite structures are presented. © 2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple in-situ synthesis route for gold nanoparticles (NPs) was developed to realize multifunctions for silk fabrics. The gold NPs were prepared in a heated solution containing white silk fabric samples. The silk fabrics were colored red and brown by the gold NPs because of their localized surface plasmon resonance (LSPR) property. Gold nanospheres on silk were obtained at a low gold content, and gold nanoplates were synthesized as the gold content increased. The silk fabrics treated with gold NPs showed good light fastness. Moreover, the gold NPs endowed silk fabrics with strong antibacterial activity, excellent UV protection property and enhanced thermal conductivity. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photochromic fabrics were prepared by a dip-coating method using a silica sol-gel solution containing photochromic dyes. The coated fabric showed a rapid photochromic response. Three methods; incorporating a UV stabilizer in the coating layer, hydrophobic treatment of the porous surface, and covering the coating layer with an additional silica layer; were used to improve the photostability and durability. All three treatments improved the photostability without noticeably changing the photochromic response/fading speeds. Most of the treatments reduced the washing and abrasion durability. The extra coating layer increased the fabric rigidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discarded silicone products can be recycled to prepare superhydrophobic powder by simply burning and smashing. The powder can be used to fabricate a superhydrophobic surface with mechanical durability such that the superhydrophobicity was kept after 50 abrasion cycles. A robust electroconductive superhydrophobic surface can also be obtained by this simple method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful amination of 4-bromo-1,8-naphthalimides with 'lengthy' imide N-functionality has been achieved using a general palladium mediated approach (conventional thermal protocols were sub-optimal). Only readily available Pd/ligand combinations were considered and the resulting Buchwald-Hartwig procedure using Pd2(dba)3, Xantphos and Cs 2CO3 is high yielding, relatively mild (40-80 °C, 24 h, yields 50-90%), requires only a modest excess of amine (3.0 equiv) and works equally well with other imide N-substituents. As such, the protocol complements existing methods but is superior for more complex substrates. Herein we compare this Pd mediated approach to the methods most commonly used and further demonstrate its utility by synthesising a number of new, highly fluorescent, 4-aminonaphthalimides. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bleached wool is rapidly yellowed by exposure to the UV radiation present in sunlight. The conventional application of a water-soluble hydroxyphenyl benzotriazole UV absorber (such as UVFast W) to bleached wool reduces its rate of photoyellowing but has a negative impact on the whiteness of the bleached wool, largely cancelling out the improvements in whiteness achieved during bleaching. However, if the UV absorber is applied to peroxide-bleached wool from a reductive bleach bath, white wool with improved photostability to sunlight and UV radiation can be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wettability is an essential property originating from liquid-solid contact and involved in various processes and applications. For fabric materials, the wettability plays important role that it can even determine the fabric’s usefulness and comfort feature. This book introduces three functional fabrics, such as superhydrophobic fabric, directional water-transfer fabric, and electrically conductive superhydrophobic fabric, which are prepared by tuning the fabric wettability using wet-chemical coating technologies. It covers details about the preparation of coating materials, coating processes, and detailed characterizations of the coatings and their effects on fabric properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G′) became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous investigations have shown that prickle discomfort sensations of wool fabrics are primarily determined by the mean fiber diameter of the wool. It is also known that differences in wool fiber curvature (crimp) affect softness of handle of greasy wool and of wool textiles. In a replicated experiment, we investigated if wearers could detect the effect of using 17 µm superfine wool of low (74°/mm) or high (114°/mm) fiber curvature, and when the wools were blended with 17 µm cashmere (fiber curvature 49°/mm) in differing proportions, on four comfort sensations. Eight single jersey knitted fabrics were assessed under a controlled protocol using forearm sleeves made of the test fabric and a control fabric. Data (37 sensorial assessments of high curvature wool fabrics; 38 sensorial assessments of low curvature wool fabrics) were analyzed using linear mixed model analysis (restricted maximum likelihood), which included fixed effects for wool type and blend ratio and a random effect for participant. The use of a control sleeve fabric reduced variance due to participant effects by providing an anchor for each sensation over time. Wool fiber curvature affected participant assessment of breathability, comfort, feel after exercise (damp/dry) and skin feel (prickly/soft), with preferred values associated with high curvature (crimp) superfine wool. Increasing the proportion of cashmere in fabrics increased skin feel (better assessed softness). Skin feel was strongly associated with the evaluation of the fabrics by the Wool ComfortMeter and with increasing hairiness of yarns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to quantify the skin comfort and handle properties of a range of wool fabrics produced from ultrafine wool (13.7–15.1 µm) and in doing so determine if differences in fiber diameter and staple crimp frequency (5.3–7.1 crimps/cm) were important in these properties. The fabrics were evaluated using a range of subjective and objective measurement techniques, including the Wool ComfortMeter, the Wool HandleMeter and in wearer trials. This work indicated that single jersey fabrics made from ultrafine wool are approaching the limit of objective and subjective evaluation of next-to-skin comfort. The results from the Wool ComfortMeter, Wool HandleMeter and the wearer trial show that there were no significant effects that can be attributed to wool staple crimp (fiber curvature) in these ultrafine wool fabrics. The work also demonstrated a difference in the manufacturing response when knitted fabric made from wools of different fiber diameter (13.7–23.7 µm), and using yarns of the same count, resulted in a progressively higher fabric mass per unit area as mean fiber diameter was progressively reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the relationships between the sensations of sweaty, damp, muggy and clingy, as assessed by human response from wearer trial garment assessment, and fiber type, fiber, yarn and fabric properties and instrumental fabric measurements of next-to-skin knitwear. Wearer trial assessment of 48 fabrics followed a strict 60 minute protocol including a range of environmental conditions and levels of exercise. Adjusted mean weighted scores were determined using linked garments. Instrumental fabric handle measurements were determined with the Wool HandleMeter (WHM) and Wool ComfortMeter. Data were analyzed using forward stepwise general linear modeling. Mean fiber diameter (MFD) affected the sweaty, damp, muggy and clingy sensation responses accounting for between 23.5% and 56.2% of the variance of these sensations. In all cases, finer fibers were associated with lower sensation scores (preferred). There were also effects of fiber type upon sweaty, muggy and clingy scores, with polyester fiber fabrics having higher scores (less preferred) compared with fabrics composed of wool, particularly for peak sweaty scores in hot and active environments. Attributes such as fabric density, yarn linear density, knitting structure and finishing treatments, but not fabric thickness, accounted for some further variance in these attributes once MFD had been taken into account. This is explained as finer fibers have a greater surface area for any given mass of fiber and so finer fibers can act as a more effective sink for moisture compared with coarser fibers. No fabric handle parameter or other attribute of fiber diameter distribution was significant in affecting these sensation scores.