984 resultados para computed tomography scanner
Resumo:
Nervous system involvement in Lyme disease often mimics other conditions and thus represents a diagnostic challenge, especially in an emergency department setting. We report a case of a female teenager presenting with sudden-onset aphasia and transient right-sided faciobrachial hemiplegia, along with headache and agitation. Ischemia, vasculitis, or another structural lesion was excluded by brain imaging. Toxicologic evaluation results were negative. Cerebral perfusion computed tomography and electroencephalography showed left parietotemporal brain dysfunction. Lumbar puncture result, although atypical, suggested bacterial infection and intravenous ceftriaxone was initiated. Finally, microbiological cerebrospinal fluid analysis revealed Lyme neuroborreliosis, showing specific intrathecal antibody production and high level of C-X-C motif chemokine 13. The patient rapidly recovered. To our knowledge, this report for the first time illustrates that acute-onset language and motor symptoms may be directly related to Lyme neuroborreliosis. Neuroborreliosis may mimic other acute neurologic events such as stroke and should be taken into diagnostic consideration even in the absence of classic symptoms and evolution.
Resumo:
PRINCIPLES: To assess the efficiency and complication rates of vaso-occlusion of pulmonary arteriovenous malformations (PAVMs) in Rendu-Osler-Weber disease (hereditary haemorrhagic telangectasia; HHT). METHODS: Seventy-two patients were investigated in our institution for HHT between March 2000 and November 2011. Sixteen presented PAVMs (22.2%), and 11 (68.8%) were treated with vaso-occlusion for a total of 18 procedures. Procedures included coils, plugs and combined approaches. Immediate success and recurrence rate, complication were recorded, as well as persistent and new PAVMs during clinical and computed tomography (CT) follow-up. RESULTS: Eighteen procedures were performed and a total of 37 PAVMs were treated, 19 with coils, 16 with plugs and 2 with combined treatment. Mean CT follow-up time was 41 months (1‒164). No major complication was observed. One distal translocation was treated during the same intervention. Two PAVMs persisted after treatment (5.7%), both treated by means of plug embolisation. One new PAVM was observed during follow-up CT. PAVMs with an afferent artery of less than 3mm or asymptomatic PAVMs were not treated. CONCLUSION: Recent studies have demonstrated that vaso-occlusion has become the gold standard treatment for PAVM. This study is in accordance with previous results and shows a minimal complication rate and little recurrence, whether by coils, plugs, or combined treatments.
Resumo:
BACKGROUND & AIMS: The standard liver volume (SLV) is widely used in liver surgery, especially for living donor liver transplantation (LDLT). All the reported formulas for SLV use body surface area or body weight, which can be influenced strongly by the general condition of the patient. METHODS: We analyzed the liver volumes of 180 Japanese donor candidates and 160 Swiss patients with normal livers to develop a new formula. The dataset was randomly divided into two subsets, the test and validation sample, stratified by race. The new formula was validated using 50 LDLT recipients. RESULTS: Without using body weight-related variables, age, thoracic width measured using computed tomography, and race independently predicted the total liver volume (TLV). A new formula: 203.3-(3.61×age)+(58.7×thoracic width)-(463.7×race [1=Asian, 0=Caucasian]), most accurately predicted the TLV in the validation dataset as compared with any other formulas. The graft volume for LDLT was correlated with the postoperative prothrombin time, and the graft volume/SLV ratio calculated using the new formula was significantly better correlated with the postoperative prothrombin time than the graft volume/SLV ratio calculated using the other formulas or the graft volume/body weight ratio. CONCLUSIONS: The new formula derived using the age, thoracic width and race predicted both the TLV in the healthy patient group and the SLV in LDLT recipients more accurately than any other previously reported formulas.
Resumo:
UNLABELLED: Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) was assessed in adult patients with mild, moderate, and severe osteogenesis imperfecta (OI). The trabecular bone score (TBS), bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA), and dual X-ray and laser (DXL) at the calcaneus were likewise assessed in patients with OI. Trabecular microstructure and BMD in particular were severely altered in patients with OI. INTRODUCTION: OI is characterized by high fracture risk but not necessarily by low BMD. The main purpose of this study was to assess bone microarchitecture and BMD at different skeletal sites in different types of OI. METHODS: HR-pQCT was performed in 30 patients with OI (mild OI-I, n = 18 (41.8 [34.7, 55.7] years) and moderate to severe OI-III-IV, n = 12 (47.6 [35.3, 58.4] years)) and 30 healthy age-matched controls. TBS, BMD by DXA at the lumbar spine and hip, as well as BMD by DXL at the calcaneus were likewise assessed in patients with OI only. RESULTS: At the radius, significantly lower trabecular parameters including BV/TV (p = 0.01 and p < 0.0001, respectively) and trabecular number (p < 0.0001 and p < 0.0001, respectively) as well as an increased inhomogeneity of the trabecular network (p < 0.0001 and p < 0.0001, respectively) were observed in OI-I and OI-III-IV in comparison to the control group. Similar results for trabecular parameters were found at the tibia. Microstructural parameters were worse in OI-III-IV than in OI-I. No significant differences were found in cortical thickness and cortical porosity between the three subgroups at the radius. The cortical thickness of the tibia was thinner in OI-I (p < 0.001), but not OI-III-IV, when compared to controls. CONCLUSIONS: Trabecular BMD and trabecular bone microstructure in particular are severely altered in patients with clinical OI-I and OI-III-IV. Low TBS and DXL and their significant associations to HR-pQCT parameters of trabecular bone support this conclusion.
Resumo:
Le nombre d'examens tomodensitométriques (Computed Tomography, CT) effectués chaque année étant en constante augmentation, différentes techniques d'optimisation, dont les algorithmes de reconstruction itérative permettant de réduire le bruit tout en maintenant la résolution spatiale, ont étés développées afin de réduire les doses délivrées. Le but de cette étude était d'évaluer l'impact des algorithmes de reconstruction itérative sur la qualité image à des doses effectives inférieures à 0.3 mSv, comparables à celle d'une radiographie thoracique. Vingt CT thoraciques effectués à cette dose effective ont été reconstruits en variant trois paramètres: l'algorithme de reconstruction, rétroprojection filtrée versus reconstruction itérative iDose4; la matrice, 5122 versus 7682; et le filtre de résolution en densité (mou) versus spatiale (dur). Ainsi, 8 séries ont été reconstruites pour chacun des 20 CT thoraciques. La qualité d'image de ces 8 séries a d'abord été évaluée qualitativement par deux radiologues expérimentés en aveugle en se basant sur la netteté des parois bronchiques et de l'interface entre le parenchyme pulmonaire et les vaisseaux, puis quantitativement en utilisant une formule de merit, fréquemment utilisée dans le développement de nouveaux algorithmes et filtres de reconstruction. La performance diagnostique de la meilleure série acquise à une dose effective inférieure à 0.3 mSv a été comparée à celle d'un CT de référence effectué à doses standards en relevant les anomalies du parenchyme pulmonaire. Les résultats montrent que la meilleure qualité d'image, tant qualitativement que quantitativement a été obtenue en utilisant iDose4, la matrice 5122 et le filtre mou, avec une concordance parfaite entre les classements quantitatif et qualitatif des 8 séries. D'autre part, la détection des nodules pulmonaires de plus de 4mm étaient similaire sur la meilleure série acquise à une dose effective inférieure à 0.3 mSv et le CT de référence. En conclusion, les CT thoraciques effectués à une dose effective inférieure à 0.3 mSv reconstruits avec iDose4, la matrice 5122 et le filtre mou peuvent être utilisés avec confiance pour diagnostiquer les nodules pulmonaires de plus de 4mm.
Resumo:
For decades, lung cancer has been the most common cancer in terms of both incidence and mortality. There has been very little improvement in the prognosis of lung cancer. Early treatment following early diagnosis is considered to have potential for development. The National Lung Screening Trial (NLST), a large, well-designed randomized controlled trial, evaluated low-dose computed tomography (LDCT) as a screening tool for lung cancer. Compared with chest X-ray, annual LDCT screening reduced death from lung cancer and overall mortality by 20 and 6.7 %, respectively, in high-risk people aged 55-74 years. Several smaller trials of LDCT screening are under way, but none are sufficiently powered to detect a 20 % reduction in lung cancer death. Thus, it is very unlikely that the NLST results will be replicated. In addition, the NLST raises several issues related to screening, such as the high false-positive rate, overdiagnosis and cost. Healthcare providers and systems are now left with the question of whether the available findings should be translated into practice. We present the main reasons for implementing lung cancer screening in high-risk adults and discuss the main issues related to lung cancer screening. We stress the importance of eligibility criteria, smoking cessation programs, primary care physicians, and informed-decision making should lung cancer screening be implemented. Seven years ago, we were waiting for the results of trials. Such evidence is now available. Similar to almost all other cancer screens, uncertainties exist and persist even after recent scientific efforts and data. We believe that by staying within the characteristics of the original trial and appropriately sharing the evidence as well as the uncertainties, it is reasonable to implement a LDCT lung cancer screening program for smokers and former smokers.
Resumo:
Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.
Resumo:
OBJECTIVE: Intraosseous lipomas may be less rare lesions than previously suggested in the literature. They have frequently been misdiagnosed as other benign bone lesions. A combination of computed tomography, magnetic resonance imaging and radiography is essential for decreasing misdiagnosis rates. MATERIALS AND METHODS: This retrospective study presents ten cases of intraosseous lipoma. The patients' ages ranged from 25 to 80 years, and six of them were female. Six patients presented with bone pain, whereas four patients were asymptomatic with incidentally discovered lesions. The involved bones were: femur (four patients), tibia (two patients), calcaneus (one patient), sacrum (one patient), iliac bone (one patient), navicular bone (one patient). All of the patients were assessed by means of conventional radiography, computed tomography and magnetic resonance imaging of the affected region. RESULTS: In all of the cases, plain films revealed well-defined lytic lesions. Both computed tomography and magnetic resonance imaging were quite useful in demonstrating fat within the femur. The histologic pattern of all tumors was that of mature adipose tissue. CONCLUSION: Intraosseous lipoma is a well-defined entity that may develop with varying presentations. Plain radiographs alone cannot establish the diagnosis of this lesion. However, both computed tomography and magnetic resonance imaging are quite useful methods in these cases.
Resumo:
The left brachiocephalic vein occasionally follows an aberrant course. It is usually associated with congenital cardiac anomaly. We present a case of anomalous left brachiocephalic vein which followed a sub aortic course, with no cardiac abnormality. Multi detector computed tomography is very useful in accurate diagnosis of this condition and prevents any further investigation in cases of isolated abnormalities.
Resumo:
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
We describe imaging findings of a oesophageal liposarcoma in a 66 year old man. The computed tomography scan was performed after a chest radiograph showed a large posterior mediastinal mass. Oesophageal liposarcomas are rare tumours. They can achieve large size before they become symptomatic. Our patient was successfully managed with complete surgical removal.
Resumo:
In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
La presente entrega de la serie de Nursing sobre las pruebas complementarias está dedicada a la tomografía computarizada (TC). La TC fue pensada inicialmente para explorar el encéfalo en profundidad, pero su capacidad diagnóstica ha caracterizado su evolución desde sus inicios a principios de la década de los setenta, cuando el ingeniero británico Sir Godfrey Newbold Hounsfield ideó el primer prototipo de TC. En la actualidad se utiliza para la exploración y estudio de prácticamente la totalidad de órganos y tejidos. La TC se caracteriza por tener una elevada capacidad de discriminación en las estructuras anatómicas en función de su densidad. Esto permite diferenciar órganos, tejidos y sus lesiones, ofreciendo la posibilidad de obtener más información de la que mostraba la imagen radiológica convencional, que se caracterizaba por la obtención de una imagen general de la estructura a estudiar. En el caso de la TC, uno de los aspectos más destacados es la adquisición axial de la imagen, que permite estudiar porciones de anatomía. La capacidad de visión multiplanar de los nuevos equipos multicoronas, junto con la capacidad de diferenciar densidades, la convierten en una poderosa herramienta diagnóstica. Desde el punto de vista de atención al paciente, la enfermera explica e informa sobre la dinámica de las exploraciones que, dadas las características de la TC, hacen imprescindible el conocimiento de las preparaciones y los cuidados durante y después de la técnica para que se resuelvan de manera eficaz y sin molestias para el paciente.