985 resultados para component classification
Resumo:
In evaluating an interconnection network, it is indispensable to estimate the size of the maximal connected components of the underlying graph when the network begins to lose processors. Hypercube is one of the most popular interconnection networks. This article addresses the maximal connected components of an n -dimensional cube with faulty processors. We first prove that an n -cube with a set F of at most 2n - 3 failing processors has a component of size greater than or equal to2(n) - \F\ - 1. We then prove that an n -cube with a set F of at most 3n - 6 missing processors has a component of size greater than or equal to2(n) - \F\ - 2.
Resumo:
evaluating the fault tolerance of an interconnection network, it is essential to estimate the size of a maximal connected component of the network at the presence of faulty processors. Hypercube is one of the most popular interconnection networks. In this paper, we prove that for ngreater than or equal to6, an n-dimensional cube with a set F of at most (4n-10) failing processors has a component of size greater than or equal to2"-\F-3. This result demonstrates the superiority of hypercube in terms of the fault tolerance.
Resumo:
Hypercube is one of the most popular topologies for connecting processors in multicomputer systems. In this paper we address the maximum order of a connected component in a faulty cube. The results established include several known conclusions as special cases. We conclude that the hypercube structure is resilient as it includes a large connected component in the presence of large number of faulty vertices.
Resumo:
In order to make a full evaluation of an interconnection network, it is essential to estimate the minimum size of a largest connected component of this network provided the faulty vertices in the network may break its connectedness. Star graphs are recognized as promising candidates for interconnection networks. This article addresses the size of a largest connected component of a faulty star graph. We prove that, in an n-star graph (n >= 3) with up to 2n-4 faulty vertices, all fault-free vertices but at most two form a connected component. Moreover, all fault-free vertices but exactly two form a connected component if and only if the set of all faulty vertices is equal to the neighbourhood of a pair of fault-free adjacent vertices. These results show that star graphs exhibit excellent fault-tolerant abilities in the sense that there exists a large functional network in a faulty star graph.
Resumo:
Stochastic discrimination (SD) depends on a discriminant function for classification. In this paper, an improved SD is introduced to reduce the error rate of the standard SD in the context of a two-class classification problem. The learning procedure of the improved SD consists of two stages. Initially a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. Then the standard SD is modified by 1) restricting sampling in the important space, and 2) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but with a smaller variance than that of the standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples are provided to demonstrate the effectiveness of the proposed improved SD.
Resumo:
The study examined: (a) the role of phonological, grammatical, and rapid automatized naming (RAN) skills in reading and spelling development; and (b) the component processes of early narrative writing skills. Fifty-seven Turkish-speaking children were followed from Grade 1 to Grade 2. RAN was the most powerful longitudinal predictor of reading speed and its effect was evident even when previous reading skills were taken into account. Broadly, the phonological and grammatical skills made reliable contributions to spelling performance but their effects were completely mediated by previous spelling skills. Different aspects of the narrative writing skills were related to different processing skills. While handwriting speed predicted writing fluency, spelling accuracy predicted spelling error rate. Vocabulary and working memory were the only reliable longitudinal predictors of the quality of composition content. The overall model, however, failed to explain any reliable variance in the structural quality of the compositions
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
A unified view on the interfacial instability in a model of aluminium reduction cells in the presence of a uniform, vertical, background magnetic field is presented. The classification of instability modes is based on the asymptotic theory for high values of parameter β, which characterises the ratio of the Lorentz force based on the disturbance current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts independent of the horizontal cross-section of the cell: highly unstable wall modes and stable or weakly unstable centre, or Sele’s modes. The wall modes with the disturbance of the interface being localised at the sidewalls of the cell dominate the dynamics of instability. Sele’s modes are characterised by a distributed disturbance over the whole horizontal extent of the cell. As β increases these modes are stabilized by the field.
Resumo:
Real-world text classification tasks often suffer from poor class structure with many overlapping classes and blurred boundaries. Training data pooled from multiple sources tend to be inconsistent and contain erroneous labelling, leading to poor performance of standard text classifiers. The classification of health service products to specialized procurement classes is used to examine and quantify the extent of these problems. A novel method is presented to analyze the labelled data by selectively merging classes where there is not enough information for the classifier to distinguish them. Initial results show the method can identify the most problematic classes, which can be used either as a focus to improve the training data or to merge classes to increase confidence in the predicted results of the classifier.
Resumo:
The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signal peptide of 34 amino acid residues and a C-terminal 'Peptidase_M75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr_3370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M(W) 27,772Da). Circular dichroism spectroscopy of EfeM indicated a mainly alpha-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.
Resumo:
This paper is concerned with the use of a genetic algorithm to select financial ratios for corporate distress classification models. For this purpose, the fitness value associated to a set of ratios is made to reflect the requirements of maximizing the amount of information available for the model and minimizing the collinearity between the model inputs. A case study involving 60 failed and continuing British firms in the period 1997-2000 is used for illustration. The classification model based on ratios selected by the genetic algorithm compares favorably with a model employing ratios usually found in the financial distress literature.
Resumo:
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semisolid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.