965 resultados para complications, cardiac arrest
Resumo:
OBJECTIVES: Transcatheter aortic valve replacement (TAVR) provides good results in selected high-risk patients. However, it is unclear whether this procedure carries advantages in extreme-risk profile patients with logistic EuroSCORE above 35%. METHODS: From January 2009 to July 2011, of a total number of 92 transcatheter aortic valve procedures performed, 40 'extreme-risk' patients underwent transapical TAVR (TA-TAVR) (EuroSCORE above 35%). Variables were analysed as risk factors for hospital and mid-term mortality, and a 2-year follow-up (FU) was obtained. RESULTS: The mean age was: 81 ± 10 years. Twelve patients (30%) had chronic pulmonary disease, 32 (80%) severe peripheral vascular disease, 14 (35%) previous cardiac surgery, 19 (48%) chronic renal failure (2 in dialysis), 7 (17%) previous stroke (1 with disabilities), 3 (7%) a porcelain aorta and 12 (30%) were urgent cases. Mean left ventricle ejection fraction (LVEF) was 49 ± 13%, and mean logistic EuroSCORE was 48 ± 11%. Forty stent-valves were successfully implanted with six Grade-1 and one Grade-2 paravalvular leakages (success rate: 100%). Hospital mortality was 20% (8 patients). Causes of death following the valve academic research consortium (VARC) definitions were: life-threatening haemorrhage (1), myocardial infarction (1), sudden death (1), multiorgan failure (2), stroke (1) and severe respiratory dysfunction (2). Major complications (VARC definitions) were: myocardial infarction for left coronary ostium occlusion (1), life-threatening bleeding (2), stroke (2) and acute kidney injury with dialysis (2). Predictors for hospital mortality were: conversion to sternotomy, life-threatening haemorrhage, postoperative dialysis and long intensive care unit (ICU) stay. Variables associated with hospital mortality were: conversion to sternotomy (P = 0.03), life-threatening bleeding (P = 0.02), acute kidney injury with dialysis (P = 0.03) and prolonged ICU stay (P = 0.02). Mean FU time was 24 months: actuarial survival estimates for all-cause mortality at 6 months, 1 year, 18 months and 2 years were 68, 57, 54 and 54%, respectively. Patients still alive at FU were in good clinical condition, New York Heart Association (NYHA) class 1-2 and were never rehospitalized for cardiac decompensation. CONCLUSIONS: TA-TAVR in extreme-risk patients carries a moderate risk of hospital mortality. Severe comorbidities and presence of residual paravalvular leakages affect the mid-term survival, whereas surviving patients have an acceptable quality of life without rehospitalizations for cardiac decompensation.
Resumo:
The combination of cardiac viability and functional information enhances the identification of different heart tissues in the setting of ischemic heart disease. A method has recently been proposed for obtaining black-blood delayed-enhancement (DE) viability images using the stimulated-echo acquisition mode (STEAM) MRI pulse sequence in a single short breathhold. The method was validated against conventional inversion-recovery (IR) DE images for identifying regions of myocardial infarction (MI). The method was based on the acquisition of three consecutive images of the same anatomical slice. One image has T(1)-weighted contrast in which infarction appears bright. The two other images are used to construct an anatomical image of the heart, which is combined with the first image to produce a black-blood viability image. However, using appropriate modulation and demodulation frequencies, the latter two images bear useful information about myocardial deformation that results in a cardiac strain-encoding (SENC) functional image. In this work, a method is proposed for obtaining three consecutive SENC images in a single acquisition that can be combined to produce a composite image of the heart, which shows both functional and viability information. The proposed technique reduces scan time by one-half, compared with separate acquisitions of functional and viability images, and alleviates misregistration problems caused by separate breathholds.
Resumo:
Splenic arterial interventions are increasingly performed to treat various clinical conditions, including abdominal trauma, hypersplenism, splenic arterial aneurysm, portal hypertension, and splenic neoplasm. When clinically appropriate, these procedures may provide an alternative to open surgery. They may help to salvage splenic function in patients with posttraumatic injuries or hypersplenism and to improve hematologic parameters in those who otherwise would be unable to undergo high-dose chemotherapy or immunosuppressive therapy. Splenic arterial interventions also may be performed to exclude splenic artery aneurysms from the parent vessel lumen and prevent aneurysm rupture; to reduce portal pressure and prevent sequelae in patients with portal hypertension; to treat splenic artery steal syndrome and improve liver perfusion in liver transplant recipients; and to administer targeted treatment to areas of neoplastic disease in the splenic parenchyma. As the use of splenic arterial interventions increases in interventional radiology practice, clinicians must be familiar with the splenic vascular anatomy, the indications and contraindications for performing interventional procedures, the technical considerations involved, and the potential use of other interventional procedures, such as radiofrequency ablation, in combination with splenic arterial interventions. Familiarity with the complications that can result from these interventional procedures, including abscess formation and pancreatitis, also is important.
Resumo:
Fertility and flower development are both controlled in part by jasmonates, fatty acid-derived mediators produced via the activity of 13-lipoxygenases (13-LOXs). The Arabidopsis thaliana Columbia-0 reference genome is predicted to encode four of these enzymes and it is already known that one of these, LOX2, is dispensable for fertility. In this study, the roles of the other three 13-LOXs (LOX3, LOX4 and LOX6) were investigated in single and double mutants. Four independent lox3 lox4 double mutants assembled with different mutated lox3 and lox4 alleles had fully penetrant floral phenotypes, displaying abnormal anther maturation and defective dehiscence. The plants were no longer self-fertile and pollen was not viable. Fertility in the double mutant was restored genetically by complementation with either the LOX3 or the LOX4 cDNAs and biochemically with exogenous jasmonic acid. Furthermore, deficiency in LOX3 and LOX4 causes developmental dysfunctions, compared to wild type; lox3 lox4 double mutants are taller and develop more inflorescence shoots and flowers. Further analysis revealed that developmental arrest in the lox3 lox4 inflorescence occurs with the production of an abnormal carpelloid flower. This distinguishes lox3 lox4 mutants from the wild type where developmentally typical flower buds are the terminal inflorescence structures observed in both the laboratory and in nature. Our studies of lox3 lox4 as well as other jasmonic acid biosynthesis and perception mutants show that this plant hormone is not only required for male fertility but also involved in global proliferative arrest.
Resumo:
We are interested in the development, implementation and testing of an orthotropic model for cardiac contraction based on an active strain decomposition. Our model addresses the coupling of a transversely isotropic mechanical description at the cell level, with an orthotropic constitutive law for incompressible tissue at the macroscopic level. The main differences with the active stress model are addressed in detail, and a finite element discretization using Taylor-Hood and MINI elements is proposed and illustrated with numerical examples.
Resumo:
Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.
Resumo:
In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
Purpose: Results of some PCI clinical trials indicated more procedure related complications and worse clinical outcomes in women than men, but due to a lower representation of female patients this question still remains open. We aimed toinvestigate characteristics and early and late clinical outcomes in female patients as compared to male when treated in a real life setting with a new generation DES.Methods: Among 3069 consecutive patients treated with Nobori DES, and enrolled in NOBORI 2 study, 675 were female. The primary endpoint of the study is target lesion failure (TLF), a composite of cardiac death, MI and target lesion revascularization (TLR) at 12 months. Data are entered in an electronic database; all adverse events are adjudicated by an independent clinical event committee and independent corelabs analyse all angiograms.Results: Compared to male patients, female patients were significantly older (68±10 vs ± 63±11 years; p<0.001), had higher incidence of diabetes (37% vs 27%; p<0.001) and hypertension (75% vs 66%; p<0.001), but lower frequency of previous MI, PCI/CABG and smoking history. Lesion characteristics were similar in two genders, except for lesions located at bifurcation which were more frequent inmale patients (22% vs 15% inmale and female patients respectively; p<0.001). Majority of QCA assessed parameters were similar with the exception for RVD, post-procedure MLD in-segment and %DS in-stent which were significantly lower in female patients (p<0.05 for all). In table 1 results at 6 months follow-up are presented and at the time of presentation 1 year results will be available. Table 1. Clinical results at 6 months follow-up Male (n=2394) Female (n=675) P value Cardiac Death 12 (0.5%) 5 (0.7%) 0.5550 MI 5 (2.1%) 4 (1.3%) 0.5089 TLR rate 17 (0.7%) 13 (1.9%) 0.0124 TLF rate 44 (1.8%) 17 (2.5%) 0.2745 Stent Thrombosis 12 (0.5%) 6 (0.9%) 0.2548Conclusions: Results indicate that there are differences in the demographics and risk factors in female and male patient's population. The frequency of adverse events at 6 months is low in both populations, showing trend toward slightly higher rate in female patients, particularly for target lesion revascularization.
Resumo:
INTRODUCTION: The International Neuromodulation Society (INS) has determined that there is a need for guidance regarding safety and risk reduction for implantable neurostimulation devices. The INS convened an international committee of experts in the field to explore the evidence and clinical experience regarding safety, risks, and steps to risk reduction to improve outcomes. METHODS: The Neuromodulation Appropriateness Consensus Committee (NACC) reviewed the world literature in English by searching MEDLINE, PubMed, and Google Scholar to evaluate the evidence for ways to reduce risks of neurostimulation therapies. This evidence, obtained from the relevant literature, and clinical experience obtained from the convened consensus panel were used to make final recommendations on improving safety and reducing risks. RESULTS: The NACC determined that the ability to reduce risk associated with the use of neurostimulation devices is a valuable goal and possible with best practice. The NACC has recommended several practice modifications that will lead to improved care. The NACC also sets out the minimum training standards necessary to become an implanting physician. CONCLUSIONS: The NACC has identified the possibility of improving patient care and safety through practice modification. We recommend that all implanting physicians review this guidance and consider adapting their practice accordingly.
Resumo:
OBJECTIVE: In vivo differentiation of cardiac myocytes is associated with downregulation of the glucose transporter isoform GLUT1 and upregulation of the isoform GLUT4. Adult rat cardiomyocytes in primary culture undergo spontaneous dedifferentiation, followed by spreading and partial redifferentiation, which can be influenced by growth factors. We used this model to study the signaling mechanisms modifying the expression of GLUT4 in cardiac myocytes. RESULTS: Adult rat cardiomyocytes in primary culture exhibited spontaneous upregulation of GLUT1 and downregulation of GLUT4, suggesting resumption of a fetal program of GLUT gene expression. Treatment with IGF-1 and, to a minor extent, FGF-2 resulted in restored expression of GLUT4 protein and mRNA. Activation of p38 MAPK mediated the increased expression of GLUT4 in response to IGF-1. Transient transfection experiments in neonatal cardiac myocytes confirmed that p38 MAPK could activate the glut4 promoter. Electrophoretic mobility shift assay in adult rat cardiomyocytes and transient transfection experiments in neonatal cardiac myocytes indicated that MEF2 was the main transcription factor transducing the effect of p38 MAPK activation on the glut4 promoter. CONCLUSION: Spontaneous dedifferentiation of adult rat cardiomyocytes in vitro is associated with downregulation of GLUT4, which can be reversed by treatment with IGF-1. The effect of IGF-1 is mediated by the p38 MAPK/MEF2 axis, which is a strong inducer of GLUT4 expression.