990 resultados para complement deficiencies
Resumo:
In the vast majority of bottom-up proteomics studies, protein digestion is performed using only mammalian trypsin. Although it is clearly the best enzyme available, the sole use of trypsin rarely leads to complete sequence coverage, even for abundant proteins. It is commonly assumed that this is because many tryptic peptides are either too short or too long to be identified by RPLC-MS/MS. We show through in silico analysis that 20-30% of the total sequence of three proteomes (Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Homo sapiens) is expected to be covered by Large post-Trypsin Peptides (LpTPs) with M(r) above 3000 Da. We then established size exclusion chromatography to fractionate complex yeast tryptic digests into pools of peptides based on size. We found that secondary digestion of LpTPs followed by LC-MS/MS analysis leads to a significant increase in identified proteins and a 32-50% relative increase in average sequence coverage compared to trypsin digestion alone. Application of the developed strategy to analyze the phosphoproteomes of S. pombe and of a human cell line identified a significant fraction of novel phosphosites. Overall our data indicate that specific targeting of LpTPs can complement standard bottom-up workflows to reveal a largely neglected portion of the proteome.
Resumo:
ABSTRACT The network of actin cytoskeleton is composed of actin filaments (F-actin) that are made by polymerisation of actin monomers and actin binding proteins. It is required for growth and morphogenesis of eukaryotic cells. The labelling of F-actin with constitutively expressed GFP-Talin (Kost et al., 1998) reveals the organisation of cellular actin networks in plants. Due to the lack of information on actin cytoskeleton through gametophytic development of the model moss plant Physcornitrella patens, stable transgenic lines overexpressing GFP-Talin were generated to detect F-actin structures. It is shown that the 35S promoter driven expression is not suitable for F-actin labelling in all cells. When it is replaced by the inducible heat-shock promoter Gmhsp17.3 from soybean, one hour mild heat stress at 37°C followed by recovery at 25°C is enough to induce efficient and transient labelling in all tissues without altering cellular morphology. The optimal observations of F-actin structures at different stages of moss development can be done between 12-18 hours after the induction. By using confocal microscopy, we demonstrate that stellated actin arrays were densely accumulated at the growing tip in regenerating protoplasts, apical protonemal cells and rhizoids and connected with a fine dispersed F-actin mesh. Following three-dimensional growth, the cortical star-like structures are widespread in the meristematic cells of developing bud and young gametophores. On the contrary, undulating networks of actin cables are found at the final stage of cell differentiation. During redifferentiation of mature leaf cells into protonemal filaments the rather stagnant web of actin cables is replaced by diffuse actin meshwork. In eukaryotes, nucleation of the actin monomers prior to their polymerization is driven by the seven-subunit ARP2/3 complex and formins. We cloned the gene encoding the ARP3 subunit of P. patens and generated arp3 mutants of the moss through gene disruption. The knockout of ARP3 affects the elongation of chloronemal cells and blocks further differentiation of caulonemal cells and rhizoids, and the gametophores are slightly stunted compared to wild-type. The arp mutants were created in the heat-shock inducible GFP-Talin strains allowing us to visualise a disorganised actin network and a lack of star-like actin cytoskeleton arrays. We conclude that ARP2/3 dependent nucleation of actin filaments is critical for the growth of filamentous cells, which in turn influences moss colonization. In complementation assays, the overexpression of Physcomitrella and Arab idopsis ARP3 genes in the moss arp3 mutant results in full recovery of wild type phenotype. In contrast the ARP3 subunit of fission yeast is not able to complement the moss arp3 mutant of moss indicating that regulation of the ARP2/3 dependent actin nucleation diverged in different kingdoms. RESUME Le réseau d'actine est composé de filaments de F-actine et d'un ensemble de protéines s'y attachant (Actin binding proteins). Le réseau d'actine est nécessaire à la croissance et à la morphogenèse de toutes les cellules eucaryotes. Chez les plantes, le marquage ainsi que l'étude de l'organisation du réseau d'actine ont été réalisés en utilisant une fusion GFP-Talin (Kost et al., 1998) exprimée sous le control d'un promoteur constitutif. Afin d'étudier les structures F-actine dans les cellules de Physcomitrella Patens et pour combler le manque d'information sur le développement des gamétophores, des lignées transgéniques stables surexprimant GFP-Talin ont été crées. Nous avons démontré que l'utilisation du promoteur 35S est inadéquate pour le marquage complet et homogène des filaments d'actine dans toutes les cellules de P. patens. Par contre, l'utilisation du promoteur inductible Gmhsp17.3 nous a permis de réaliser un marquage transitoire et général dans tous les tissus de la mousse. Une heure de choc thermique à 37°C suivis d'un temps de récupération de 12-18h à 25°C sont les conditions optimales (sans dommages cellulaires) pour l'observation des structures F-actine à différentes étapes de développement de la mousse. En utilisant la microscopie confocale, nous avons observé l'existence de structures F-actine accumulées en forme d'étoiles. Ces structures, qui sont liées au réseau de microfilaments d'actine, ont été observées dans les protoplastes en régénération, les cellules des protonema apicales ainsi que dans les rhizoïdes. En suivant la croissance tridimensionnelle, ces structures en étoiles ont été observées dans les cellules meristématiques des bourgeons et des jeunes gamétophores. Par contre, dans les cellules différentiées ces structures laissent place à des réseaux de câbles épais. Nous avons également remarqué que durant la redifferentiation des cellules foliaires le réseau de câbles de F-actine est remplacé par un réseau de F-actine diffus. Dans les cellules eucaryotes, la nucléation des filaments d'actirie précédant leur polymérisation est contrôlé par sept sous unités du complexe ARP2/3 et par des formines. Nous avons isolé le gène codant pour la sous unité ARP3 de P. patens et nous avons crée des mutants arp3 par intégration ciblée (Knockout). L'élongation des cellules chloronema est clairement affectée dans les mutants arp3. La différentiation des caulonemata et des rhizoïdes est bloquée et les gametophores sont légèrement plus courts comparé au type sauvage. A fin d'étudier l'organisation des filaments d'actines dans les mutants arp3, nous avons aussi réalisé un arp3-knockout dans la lignée Hsp-GFP-Talin. La nouvelle lignée générée nous a permis de visualiser une désorganisation du réseau d'actine et une absence complète de structures de F-actine accumulée en forme d'étoiles. Les résultats obtenus nous amènent à conclure que la nucléation (ARP2/3 dépendante) des filaments d'actine est indispensable à la croissance des cellules filamenteuses. Par conséquent, les filaments d'actine semblent avoir un rôle dans la colonisation des milieux par les mousses. Nous avons également procédé à des essais de complémentation du mutant arp3. La surexpression des gènes ARP3 de Physcomitrella et d'Arabidopsis dans les cellules du mutant arp3 rétabli complètement le phénotype WT. Par contre, le gène ARP3 des levures n'est pas suffisant pour complémenter la même mutation dans les cellules de mousses. Ce résultat démontre que les mécanismes de régulation de la nucléation des filaments d'actine (ARP2/3 dépendante) sont différents entre les différents groupes d'eucaryotes.
Resumo:
Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.
Resumo:
BACKGROUND AND AIMS: Mannan-binding lectin (MBL) and ficolins are microbial pattern recognition molecules that activate the lectin pathway of complement. We previously reported the association of MBL deficiency with anti-Saccharomyces cerevisiae antibodies (ASCA) in patients with Crohn's disease (CD). However, ASCA are also frequently found in MBL-proficient CD patients. Here we addressed expression/function of ficolins and MBL-associated serine protease-2 (MASP-2) regarding potential association with ASCA. METHODS: ASCA titers and MBL, ficolin and MASP-2 concentrations were determined by ELISA in the serum of patients with CD, ulcerative colitis (UC), and in healthy controls. MASP-2 activity was determined by measuring complement C4b-fixation. Anti-MBL autoantibodies were detected by ELISA. RESULTS: In CD and UC patients, L-ficolin concentrations were significantly higher compared to healthy controls (p<0.001 and p=0.029). In contrast, H-ficolin concentrations were slightly reduced in CD and UC compared to healthy controls (p=0.037 for UC vs. hc). CD patients with high ASCA titers had significantly lower H-ficolin concentrations compared to ASCA-low/negative CD patients (p=0.009). However, MASP-2 activity was not different in ASCA-negative and ASCA-positive CD patients upon both, ficolin- or MBL-mediated MASP-2 activation. Finally, anti-MBL autoantibodies were not over-represented in MBL-proficient ASCA-positive CD patients. CONCLUSIONS: Our results suggest that low expression of H-ficolin may promote elevated ASCA titers in the ASCA-positive subgroup of CD patients. However, unlike MBL deficiency, we found no evidence for low expression of serum ficolins or reduced MASP-2 activity that may predispose to ASCA development.
Resumo:
The overall objective of the work summarized in this report and in the interim report was to study the effects of targeted implement-of-husbandry loads. This report is to complement phase I of this work, which was summarized in the interim report, entitled Response of Iowa Pavements to Heavy Agricultural Loads (December 1999). The response of newly constructed Portland cement concrete (PCC) and asphalt cement concrete (ACC) pavements under semitruck, single-axle single-tire grain wagon, single-axle dual-tire grain wagon, tandem and tridem tank wagons were summarized in the interim report. Phase II of this project, presented herein, was to complete the study in terms of how tracked agricultural vehicles relate to the reference 20,000-pound single-axle semi-truck. In this report the response of these two pavements under a tracked grain wagon is documented.
Resumo:
Since new technologies based on solid phase assays (SPA) have been routinely incorporated in the transplant immunology laboratory, the presence of pretransplantation donor-specific antibodies (DSA) against human leukocyte antigen (HLA) molecules has generally been considered as a risk factor for acute rejection (AR) and, in particular, for acute humoral rejection (AHR). We retrospectively studied 113 kidney transplant recipients who had negative prospective T-cell and B-cell complement-dependent cytotoxicity (CDC) crossmatches at the time of transplant. Pretransplantation sera were screened for the presence of circulating anti-HLA antibody and DSA by using highly sensitive and HLA-specific Luminex assay, and the results were correlated with AR and AHR posttransplantation. We found that approximately half of our patient population (55/113, 48.7%) had circulating anti-HLA antibody pretransplantation. Of 113 patients, 11 (9.7%) had HLA-DSA. Of 11 rejection episodes post-transplant, only two patients had pretransplantation DSA, of whom one had a severe AHR (C4d positive). One-year allograft survival was similar between the pretransplantation DSA-positive and -negative groups. Number, class, and intensity of pretransplantation DSA, as well as presensitizing events, could not predict AR. We conclude that, based on the presence of pretransplantation DSA, post-transplantation acute rejections episodes could not have been predicted. The only AHR episode occurred in a recipient with pretransplantation DSA. More work should be performed to better delineate the precise clinical significance of detecting low titers of DSA before transplantation.
Resumo:
Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.
Resumo:
The PHO1 family comprises 11 members in Arabidopsis thaliana. In order to decipher the role of these genes in inorganic phosphate (Pi) transport and homeostasis, complementation of the pho1 mutant, deficient in loading Pi to the root xylem, was determined by the expression of the PHO1 homologous genes under the control of the PHO1 promoter. Only PHO1 and the homologue PHO1;H1 could complement pho1. The PHO1;H1 promoter was active in the vascular cylinder of roots and shoots. Expression of PHO1;H1 was very low in Pi-sufficient plants, but was strongly induced under Pi-deficient conditions. T-DNA knock-out mutants of PHO1;H1 neither showed growth defects nor alteration in Pi transport dynamics, or Pi content, compared with wild type. However, the double mutant pho1/pho1;h1 showed a strong reduction in growth and in the capacity to transfer Pi from the root to the shoot compared with pho1. Grafting experiments revealed that phenotypes associated with the pho1 and pho1/pho1;h1 mutants were linked to the lack of gene expression in the root. The increased expression of PHO1;H1 under Pi deficiency was largely controlled by the transcription factor PHR1 and was suppressed by the phosphate analogue phosphite, whereas the increase of PHO1 expression was independent of PHR1 and was not influenced by phosphite. Together, these data reveal that although transfer of Pi to the root xylem vessel is primarily mediated by PHO1, the homologue PHO1;H1 also contributes to Pi loading to the xylem, and that the two corresponding genes are regulated by Pi deficiency by distinct signal transduction pathways.
Resumo:
Stress-denatured or de novo synthesized and translocated unfolded polypeptides can spontaneously reach their native state without assistance of other proteins. Yet, the pathway to native folding is complex, stress-sensitive and prone to errors. Toxic misfolded and aggregated conformers may accumulate in cells and lead to degenerative diseases. Members of the canonical conserved families of molecular chaperones, Hsp100s, Hsp70/110/40s, Hsp60/CCTs, the small Hsps and probably also Hsp90s, can recognize and bind with high affinity, abnormally exposed hydrophobic surfaces on misfolded and aggregated polypeptides. Binding to Hsp100, Hsp70, Hsp110, Hsp40, Hsp60, CCTs and Trigger factor may cause partial unfolding of the misfolded polypeptide substrates, and ATP hydrolysis can induce further unfolding and release from the chaperone, leading to spontaneous refolding into native proteins with low-affinity for the chaperones. Hence, specific chaperones act as catalytic polypeptide unfolding isomerases, rerouting cytotoxic misfolded and aggregated polypeptides back onto their physiological native refolding pathway, thus averting the onset of protein conformational diseases.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
The need for upgrading a large number of understrength bridges in the United States has been well documented in the literature. This manual presents two methods for strengthening continuous-span composite bridges: post-tensioning of the positive moment regions of the bridge stringers and the addition of superimposed trusses at the piers. The use of these two systems is an efficient method of reducing flexural overstresses in undercapacity bridges. Before strengthening a given bridge however, other deficiencies (inadequate shear connection, fatigue problems, extensive corrosion) should be addressed. Since continuous-span composite bridges are indeterminant structures, there is longitudinal and transverse distribution of the strengthening axial forces and moments. This manual basically provides the engineer with a procedure for determining the distribution of strengthening forces and moments throughout the bridge. As a result of the longitudinal and transverse force distribution, the design methodology presented in this manual for continuous-span composite bridges is extremely complex. To simplify the procedure, a spreadsheet has been developed for use by practicing engineers. This design aid greatly simplifies the design of a strengthening system for a given bridge in that it eliminates numerous tedious hand calculations, computes the required force and moment fractions, and performs the necessary iterations for determining the required strengthening forces. The force and moment distribution fraction formulas developed in this manual are primarily for the Iowa DOT V12 and V14 three-span four-stringer bridges. These formulas may be used on other bridges if they are within the limits stated in this manual. Use of the distribution fraction formulas for bridges not within the stated limits is not recommended.
Resumo:
Until recently, microbial identification in clinical diagnostic laboratories has mainly relied on conventional phenotypic and gene sequencing identification techniques. The development of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) devices has revolutionized the routine identification of microorganisms in clinical microbiology laboratories by introducing an easy, rapid, high throughput, low-cost, and efficient identification technique. This technology has been adapted to the constraint of clinical diagnostic laboratories and has the potential to replace and/or complement conventional identification techniques for both bacterial and fungal strains. Using standardized procedures, the resolution of MALDI-TOF MS allows accurate identification at the species level of most Gram-positive and Gram-negative bacterial strains with the exception of a few difficult strains that require more attention and further development of the method. Similarly, the routine identification by MALDI-TOF MS of yeast isolates is reliable and much quicker than conventional techniques. Recent studies have shown that MALDI-TOF MS has also the potential to accurately identify filamentous fungi and dermatophytes, providing that specific standardized procedures are established for these microorganisms. Moreover, MALDI-TOF MS has been used successfully for microbial typing and identification at the subspecies level, demonstrating that this technology is a potential efficient tool for epidemiological studies and for taxonomical classification.
Resumo:
Preoperative imaging for resection of chest wall malignancies is generally performed by computed tomography (CT). We evaluated the role of (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in planning full-thickness chest wall resections for malignancies. We retrospectively included 18 consecutive patients operated from 2004 to 2006 at our institution. Tumor extent was measured by CT and PET, using the two largest perpendicular tumor extensions in the chest wall plane to compute the tumor surface assuming an elliptical shape. Imaging measurements were compared to histopathology assessment of tumor borders. CT assessment consistently overestimated the tumor size as compared to PET (+64% vs. +1%, P<0.001). Moreover, PET was significantly better than CT at defining the size of lesions >24 cm(2) corresponding to a mean diameter >5.5 cm or an ellipse of >4 cm x 7.6 cm (positive predictive value 80% vs. 44% and specificity 93% vs. 64%, respectively). Metabolic PET imaging was superior to CT for defining the extent of chest wall tumors, particularly for tumors with a diameter >5.5 cm. PET can complement CT in planning full-thickness chest wall resection for malignancies, but its true value remains to be determined in larger, prospective studies.
Resumo:
Most states, including Iowa, have a significant number of substandard bridges. This number will increase significantly unless some type of preventative maintenance is employed. Both the Iowa Department of Transportation and Iowa counties have successfully employed numerous maintenance, repair and rehabilitation (MR&R) strategies for correcting various types of deficiencies. However, successfully employed MR&R procedures are often not systematically documented or defined for those involved in bridge maintenance. This study addressed the need for a standard bridge MR&R manual for Iowa with emphasis for secondary road applications. As part of the study, bridge MR&R activities that are relevant to the state of Iowa have been systematically categorized into a manual, in a standardized format. Where pertinent, design guidelines have been presented. Material presented in this manual is divided into two major categories: 1) Repair and Rehabilitation of Bridge Superstructure Components, and 2) Repair and Rehabilitation of Bridge Substructure Components. There are multiple subcategories within both major categories that provide detailed information. Some of the detailed information includes step-by-step procedures for accomplishing MR&R activities, material specifications and detailed drawings where available. The source of information contained in the manual is public domain technical literature and information provided by Iowa County Engineers. A questionnaire was sent to all 99 counties in Iowa to solicit information and the research team personally solicited input from many Iowa counties as a follow-up to the questionnaire.
Resumo:
The use of dietary complements like vitamins, minerals, trace elements, proteins, aminoacids and plant-derived agents is prevalent in the general population, in order to promote health and treat diseases. Dietary complements are considered as safe natural products and are easily available without prescription. However, these can lead to severe renal toxicity, especially in cases of unknown pre-existing chronic kidney disease (CKD). In particular, Chinese herbs including aristolochic acid, high doses of vitamine C, creatine and protein complements may lead to acute and chronic renal failure, sometimes irreversible. Dietary complement toxicity should be suspected in any case of unexplained renal impairement. In the case of pre-existing CKD, the use of potentially nephrotoxic dietary complements should be screened for.