996 resultados para collider phenomenology, resummation, supersymmetry, QCD, Soft-Collinear Effective Theory
Resumo:
The creation of Wireless Personal Area Networks (WPANs) offers the Consumer Electronics industry a mechanism to truly unwire consumer products, leading to portability and ease of installation as never seen before. WPAN's can offer data-rates exceeding those that are required to convey high quality broadcast video, thus users can easily connect to high quality video for multimedia presentations in education, libraries, advertising, or have a wireless connection at home. There have been many WPAN proposals, but this paper concentrates on ECMA-368 as this standard has the largest industrial and implementers' forum backing. With the aim to effective consumer electronic define and create cost equipment this paper discusses the technology behind ECMA-368 physical layer, the design freedom availabilities, the required processing, buffer memory requirements and implementation considerations while concentrating on supporting all the offered data-rates(1).
Resumo:
When considering the relative fast processing speeds and low power requirements for Wireless Personal Area Networks (WPAN) including Wireless Universal Serial Bus (WUSB) consumer based products, then the efficiency and cost effectiveness of these products become paramount. This paper presents an improved soft-output QPSK demapper suitable for the products above that not only exploits time diversity and guard carrier diversity, but also merges the demapping and symbol combining functions together to minimize CPU cycles, or memory access dependant upon the chosen implementation architecture. The proposed demapper is presented in the context of Multiband OFDM version of Ultra Wideband (UWB) (ECMA-368) as the chosen physical implementation for high-rate Wireless US8(1).
Resumo:
The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas and performing a monochromatic radiation calculation for each point. In this presentation it is shown that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K/day due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such that they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K/day can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K/day for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.
Resumo:
A nonlocal version of the NJL model is investigated. It is based on a separable quark-quark interaction, as suggested by the instanton liquid picture of the QCD vacuum. The interaction is extended to include terms that bind vector and axial-vector mesons. The nonlocality means that no further regulator is required. Moreover the model is able to confine the quarks by generating a quark propagator without poles at real energies. Features of the continuation of amplitudes from Euclidean space to Minkowski energies are discussed. These features lead to restrictions on the model parameters as well as on the range of applicability of the model. Conserved currents are constructed, and their consistency with various Ward identities is demonstrated. In particular, the Gell-Mann-Oakes-Renner relation is derived both in the ladder approximation and at meson loop level. The importance of maintaining chiral symmetry in the calculations is stressed throughout. Calculations with the model are performed to all orders in momentum. Meson masses are determined, along with their strong and electromagnetic decay amplitudes. Also calculated are the electromagnetic form factor of the pion and form factors associated with the processes gamma gamma* --> pi0 and omega --> pi0 gamma*. The results are found to lead to a satisfactory phenomenology and demonstrate a possible dynamical origin for vector-meson dominance. In addition, the results produced at meson loop level validate the use of 1/Nc as an expansion parameter and indicate that a light and broad scalar state is inherent in models of the NJL type.
Resumo:
While there is a strong moral case for corporate social responsibility (CSR), the business case for CSR is certainly not irrefutable. A better understanding of how to integrate CSR into business strategy is needed but with ever increasing momentum towards sustainability as a business driver, it is often difficult to untangle the rhetoric from reality in the CSR debate. Through an analysis of eight case studies of leading firms from throughout the construction supply chain who claim to engage in CSR, we explore how consulting and contracting firms in the construction and engineering industries integrate CSR into their business strategy. Findings point to an inherent caution of moving beyond compliance and to a risk-averse culture which adopts very narrow definitions of success. We conclude that until this culture changes or the industry is forced by clients or regulation to change, the idea of CSR will continue to mean achieving economic measures of success, with ecological goals a second regulated priority and social goals a distant third.
Resumo:
Water-soluble polymers are often capable of forming interpolymer complexes in solutions and at interfaces, which offers an excellent opportunity for surface modification. The complex formation may be driven by H-bonding between poly(carboxylic acids) and non-ionic polymers or by electrostatic attraction between oppositely-charged polyelectrolytes. In the present communication the following applications of interpolymer complexation in coating technologies will be considered: (1) Complexation between poly(acrylic acid) and non-ionic polymers via H-bonding was used to coat glass surfaces. It was realised using layer-by-layer deposition of IPC on glass surfaces with subsequent cross-linking of dry multilayers by thermal treatment. Depending on the glass surface functionality this complexation resulted in detachable and non-detachable hydrogel films; (2) Electrostatic layer-by-layer self-assembly between glycol chitosan and bovine serum albumin (BSA) was used to coat magnetic nanoparticles. It was demonstrated that the native structure of BSA remains unaffected by the self-assembling process.
Resumo:
Synthetic pyrethroid insecticides are degraded almost entirely by ultraviolet (UV)-catalysed oxidation. A bioassay using the beetle Tribolium confusum duVal caged on bandages soaked in 0.04% a.i. cypermethrin showed large differences in residual insecticide-life under three plastic films available for cladding polytunnels. Cypermethrin exposed to a UV film that transmitted 70% of UVB and 80% of UVA killed all beetles for 8 weeks, compared to only 3 weeks for cypermethrin exposed in a clear plastic envelope. Cypermethrin under a UV-absorbing film that reduced the transmission of UVB and UVA to 14% and 50%, respectively, gave a complete kill for 17 weeks. Reducing the transmission of UVB to virtually zero, and that of UVA to only 3%, using a UV-opaque film prolonged the effective life of the cypermethrin residue to 26 weeks, and some beetles were still killed for a further 11 weeks. Even after this time, beetles exposed to cypermethrin from the UV-opaque treatment were still affected by the insecticide, and only showed near-normal mobility after 24 months of pesticide exposure to the UV-opaque film. These results have implications for the recommended intervals between cypermethrin treatment and crop harvest, and on the time of introduction of insect-based biological control agents, when UV-opaque films are used in commercial horticulture.
Resumo:
Industrial projects are often complex and burdened with time pressures and a lack of information. The term 'soft-project' used here stands for projects where the ‘what’ and/or the ‘how’ is uncertain, which is often the experience in projects involving software intensive systems developments. This thesis intertwines the disciplines of project management and requirements engineering in a goal-oriented application of the maxim ‘keep all objectives satisfied’. It thus proposes a method for appraising projects. In this method, a goal-oriented analysis establishes a framework with which expert judgements are collected so as to construct a confidence profile in regard to the feasibility and adequacy of the project's planned outputs. It is hoped that this appraisal method will contribute to the activities of project ‘shaping’ and aligning stakeholders’ expectations whilst helping project managers appreciate what parts of their project can be progressed and what parts should be held pending further analysis. This thesis offers the following original contribution: an appreciation of appraisal in the project context; a goal-oriented confidence profiling technique; and: a technique to produce goal-refinement diagrams – referred to as Goal Sketching. Collectively these amount to a method for the ‘Goal Refinement Appraisal of Soft-Projects’ (GRASP). The validity of the GRASP method is shown for two projects. In the first it is used for shaping a business investigation project. This is done in real-time in the project. The second case is a retrospective study of an enterprise IT project. This case tests the effectiveness of forecasting project difficulty from an initial confidence profile.