977 resultados para coastal resources


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Common Octopus, Octopus vulgaris, is an r-selected mollusk found off the coast of North Carolina that interests commercial fishermen because of its market value and the cost-effectiveness of unbaited pots that can catch it. This study sought to: 1) determine those gear and environmental factors that influenced catch rates of octopi, and 2) evaluate the feasibility of small-scale commercial operations for this species. Pots were fished from August 2010 through September 2011 set in strings over hard and sandy bottom in waters from 18 to 30 m deep in Onslow Bay, N.C. Three pot types were fished in each string; octopus pots with- and without lids, and conch pots. Proportional catch was modeled as a function of gear design and environmental factors (location, soak time, bottom type, and sea surface water temperature) using binomially distributed generalized linear models (GLM’s); parsimony of each GLM was assessed with Akaike Information Criteria (AIC). A total of 229 octopi were caught throughout the study. Pots with lids, pots without lids, and conch pots caught an average of 0.15, 0.17, and 0.11 octopi, respectively, with high variability in catch rates for each pot type. The GLM that best fit the data described proportional catch as a function of sea surface temperature, soak time, and station; greatest proportional catches occurred over short soak times, warmest temperatures, and less well known reef areas. Due to operating expenses (fuel, crew time, and maintenance), low catch rates of octopi, and high gear loss, a directed fishery for this species is not economically feasible at the catch rates found in this study. The model fitting to determine factors most influential on catch rates should help fishermen determine seasons and gear soak times that are likely to maximize catch rates. Potting for octopi may be commercially practical as a supplemental activity when targeting demersal fish species that are found in similar habitats and depth ranges in coastal waters off North Carolina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The priority management goal of the National Marine Sanctuaries Program (NMSP) is to protect marine ecosystems and biodiversity. This goal requires an understanding of broad-scale ecological relationships and linkages between marine resources and physical oceanography to support an ecosystem management approach. The Channel Islands National Marine Sanctuary (CINMS) is currently reviewing its management plan and investigating boundary expansion. A management plan study area (henceforth, Study Area) was described that extends from the current boundary north to the mainland, and extends north to Point Sal and south to Point Dume. Six additional boundary concepts were developed that vary in area and include the majority of the Study Area. The NMSP and CINMS partnered with NOAA’s National Centers for Coastal Ocean Science Biogeography Team to conduct a biogeographic assessment to characterize marine resources and oceanographic patterns within and adjacent to the sanctuary. This assessment includes a suite of quantitative spatial and statistical analyses that characterize biological and oceanographic patterns in the marine region from Point Sal to the U.S.-Mexico border. These data were analyzed using an index which evaluates an ecological “cost-benefit” within the proposed boundary concepts and the Study Area. The sanctuary resides in a dynamic setting where two oceanographic regimes meet. Cold northern waters mix with warm southern waters around the Channel Islands creating an area of transition that strongly influences the regions oceanography. In turn, these processes drive the biological distributions within the region. This assessment analyzes bathymetry, benthic substrate, bathymetric life-zones, sea surface temperature, primary production, currents, submerged aquatic vegetation, and kelp in the context of broad-scale patterns and relative to the proposed boundary concepts and the Study Area. Boundary cost-benefit results for these parameters were variable due to their dynamic nature; however, when analyzed in composite the Study Area and Boundary Concept 2 were considered the most favorable. Biological data were collected from numerous resource agencies and university scientists for this assessment. Fish and invertebrate trawl data were used to characterize community structure. Habitat suitability models were developed for 15 species of macroinvertebrates and 11 species of fish that have significant ecological, commercial, or recreational importance in the region and general patterns of ichthyoplankton distribution are described. Six surveys of ship and plane at-sea surveys were used to model marine bird diversity from Point Arena to the U.S.-Mexico border. Additional surveys were utilized to estimate density and colony counts for nine bird species. Critical habitat for western snowy plover and the location of California least tern breeding pairs were also analyzed. At-sea surveys were also used to describe the distribution of 14 species of cetaceans and five species of pinnipeds. Boundary concept cost-benefit indices revealed that Boundary Concept 2 and the Study Area were most favorable for the majority of the species-specific analyses. Boundary Concept 3 was most favorable for bird diversity across the region. Inadequate spatial resolution for fish and invertebrate community data and incompatible sampling effort information for bird and mammal data precluded boundary cost-benefit analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial and temporal occurrence of Atlantic bottlenose dolphins (Tursiops truncatus) in the coastal and estuarine waters near Charleston, SC were evaluated. Sighting and photographic data from photo-identification (ID), remote biopsy, capture-release and radio-tracking studies, conducted from 1994 through 2003, were analyzed in order to further delineate residence patterns of Charleston area bottlenose dolphins. Data from 250 photo-ID, 106 remote biopsy, 15 capture-release and 83 radio-tracking surveys were collected in the Stono River Estuary (n = 247), Charleston Harbor (n = 86), North Edisto River (n = 54), Intracoastal Waterway (n = 26) and the coastal waters north and south of Charleston Harbor (n = 41). Coverage for all survey types was spatially and temporally variable, and in the case of biopsy, capture-release and radio-tracking surveys, data analyzed in this report were collected incidental to other research. Eight-hundred and thirty-nine individuals were photographically identified during the study period. One-hundred and fifteen (13.7%) of the 839 photographically identified individuals were sighted between 11-40 times, evidence of consistent occurrence in the Charleston area (i.e., site fidelity). Adjusted sighting proportions (ASP), which reflect an individual’s sighting frequency in a subarea relative to other subareas after adjusting for survey effort, were analyzed in order to evaluate dolphin spatial occurrence. Forty-three percent (n = 139) of dolphins that qualified for ASP analyses exhibited a strong subarea affiliation while the remaining 57% (n = 187) showed no strong subarea preference. Group size data were derived from field estimates of 2,342 dolphin groups encountered in the five Charleston subareas. Group size appeared positively correlated with degree of “openness” of the body of water where dolphins were encountered; and for sightings along the coast, group size was larger during summer months. This study provides valuable information on the complex nature of bottlenose dolphin spatial and temporal occurrence near Charleston, SC. In addition, it helps us to better understand the stock structure of dolphins along the Atlantic seaboard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This CD contains summary data of bottlenose dolphins stranded in South Carolina using a Geographical Information System (GIS) and contains two published manuscripts in .pdf files. The intent of this CD is to provide data on bottlenose dolphin strandings in South Carolina to marine mammal researchers and managers. This CD is an accumulation of 14 years of stranding data collected through the collaborations of the National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), the South Carolina Department of Natural Resources, and numerous volunteers and veterinarians that comprised the South Carolina Marine Mammal Stranding Network. Spatial and temporal information can be visually represented on maps using GIS. For this CD, maps were created to show relationships of stranding densities with land use, human population density, human interaction with dolphins, high geographical regions of live strandings, and seasonal changes. Point maps were also created to show individual strandings within South Carolina. In summary, spatial analysis revealed higher densities of bottlenose dolphin strandings in Charleston and Beaufort Counties, which consist of urban land with agricultural input. This trend was positively correlated with higher human population levels in these coastal counties as compared with other coastal counties. However, spatial analysis revealed that certain areas within a county may have low human population levels but high stranding density, suggesting that the level of effort to respond to strandings is not necessarily positively correlated with the density of strandings in South Carolina. Temporal analysis revealed a significantly higher density of bottlenose dolphin strandings in the northern portion of the State in the fall, mostly due to an increase of neonate strandings. On a finer geographic scale, seasonal stranding densities may fluctuate depending on the region of interest. Charleston Harbor had the highest density of live bottlenose dolphin strandings compared to the rest of the State. This was due in large part to the number of live dolphin entanglements in the crab pot fishery, the largest source of fishery-related mortality for bottlenose dolphins in South Carolina (Burdett and McFee 2004). Spatial density calculations also revealed that Charleston and Beaufort accounted for the majority of dolphins that were involved with human activities. 1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estuaries provide critical nursery habitat for many commercially and recreationally important fish and shellfish species. These productive, diverse ecosystems are particularly vulnerable to pollution because they serve as repositories for non–point-source contaminants from upland sources, such as pesticide runoff. Atrazine, among the most widely used pesticides in the United States, has also been one of the most extensively studied. There has not, however, been a specific assessment of atrazine in marine and estuarine ecosystems. This document characterizes the presence and transformation of atrazine in coastal waters, and the effects of atrazine on marine organisms. Review of marine and estuarine monitoring data indicate that atrazine is chronically present in U.S. coastal waters at relatively low concentrations. The concentrations detected have typically been below acute biological effects levels, and below the U.S. EPA proposed water quality criteria for atrazine. While direct risk of atrazine impacts are low, uncertainty remains regarding the effects of long-term low levels of atrazine in mixture with other contaminants. It is recommended that best management practices, such as the use of vegetative buffers and public education about pesticide use, be encouraged in the coastal zone to minimize runoff of atrazine into marine and estuarine waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to complete the overall toxics inventory for the Bay. These five systems included the Chester River, Nanticoke River, Pocomoke River, Lower Mobjack Bay (Poquosin and Back Rivers) and the South and Rhode Rivers. This study utilized a Sediment Quality Triad (SQT) approach in combination with additional water-column contaminant analysis to allow for a “weight of evidence” assessment of environmental condition. A total of 60 stations distributed among the five systems, using a probabilistic stratified random design, were sampled during the summer of 2004 to allow for synoptic measures of sediment contamination, sediment toxicity, and benthic condition. Upon completion of all analyses, stations were assigned to one of four categories based on the three legs of the triad. Stations with high sediment quality had no hits on any of the three legs of the triad; those with moderate quality had one hit; those with marginal quality had two hits; and those with poor quality had hits for all three legs of the triad. The Pocomoke River had by far the largest proportion of the total area (97.5%) classified as having high sediment quality, while the Rhode/South system had the highest proportion (11.4%) classified as poor. None of the stations in the Chester River, Nanticoke River, and Lower Mobjack Bay systems were classified as poor. More than 65% of the area of each of the five systems was classified with high to moderate sediment quality. The Rhode/South system had 30.4% of total area classified with marginally to severely poor quality. The results of this study highlight the importance of using multiple indicators and a “weight of evidence” approach to characterize environmental quality and the potential bioeffects of toxic contaminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mission of NOAA’s Office of National Marine Sanctuaries (ONMS) is to serve as the trustee for a system of marine protected areas, to conserve, protect and enhance biodiversity. To assist in accomplishing this mission, the ONMS has developed a partnership with NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch (CCMA-BB) to conduct biogeographic assessments of marine resources within and adjacent to the marine waters of NOAA’s National Marine Sanctuaries (Kendall and Monaco, 2003). Biogeography is the study of spatial and temporal distributions of organisms, their associated habitats, and the historical and biological factors that influence species’ distributions. Biogeography provides a framework to integrate species distributions and life history data with information on the habitats of a region to characterize and assess living marine resources within a sanctuary. The biogeographic data are integrated in a Geographical Information System (GIS) to enable visualization of species’ spatial and temporal patterns, and to predict changes in abundance that may result from a variety of natural and anthropogenic perturbations or management strategies (Monaco et al., 2005; Battista and Monaco, 2004). Defining biogeographic patterns of living marine resources found throughout the Northwestern Hawaiian Islands (NWHI) was identified as a priority activity at a May 2003 workshop designed to outline scientifi c and management information needs for the NWHI (Alexander et al., 2004). NOAA’s Biogeography Branch and the Papahanaumokuakea Marine National Monument (PMNM) under the direction of the ONMS designed and implemented this biogeographic assessment to directly support the research and management needs of the PMNM by providing a suite of spatially-articulated products in map and tabular formats. The major fi ndings of the biogeographic assessment are organized by chapter and listed below.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Goals and Objectives: 1) Improve existing nutrient-related eutrophication assessment methods, updating (from early 1990s to early 2000s) the eutrophication assessment for systems included in the study with the improved method. 2) Develop a human-use/socioeconomic indicator to complement the assessment indicator. The human-use indicator was developed to evaluate costs of nutrient-related degradation in coastal waters and to put the issue into a broader context relevant to the interested public and legislators as well as to scientists. 3) Project objectives included collecting existing water quality data, developing an accessible database appropriate for application to a national study, and applying the assessment methods to 14 coastal systems – nine systems north of Cape Cod and five systems south. The geographical distribution of systems was used to examine potential regional differences in condition. 4) The intent is to use the lessons learned in this pilot study on a national scale to guide completion of an update of the 1999 National Estuarine Eutrophication Assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2001, NOAA National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch (BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment across the U.S. Virgin Islands (USVI). At the request of the St. Thomas Fisherman’s Association (STFA) and NOAA Marine Debris Program, CCMA BB developed new partnerships and novel technologies to scientifically assess the threat from derelict fish traps (DFTs). Traps are the predominant gear used for finfish and lobster harvesting in St. Thomas and St. John. Natural phenomena (ground swells, hurricanes) and increasing competition for space by numerous user groups have generated concern about increasing trap loss and the possible ecological, as well as economic, ramifications. Prior to this study, there was a general lack of knowledge regarding derelict fish traps in the Caribbean. No spatially explicit information existed regarding fishing effort, abundance and distribution of derelict traps, the rate at which active traps become derelict, or areas that are prone to dereliction. Furthermore, there was only limited information regarding the impacts of derelict traps on natural resources including ghost fishing. This research identified two groups of fishing communities in the region: commercial fishing that is most active in deeper waters (30 m and greater) and an unknown number of unlicensed subsistence and or commercial fishers that fish closer to shore in shallower waters (30 m and less). In the commercial fishery there are an estimated 6,500 active traps (fish and lobster combined). Of those traps, nearly 8% (514) were reported lost during the 2008-2010 period. Causes of loss/dereliction include: movement of the traps or loss of trap markers due to entanglement of lines by passing vessels; theft; severe weather events (storms, large ground swells); intentional disposal by fishermen; traps becoming caught on various bottom structures (natural substrates, wrecks, etc.); and human error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient overenrichment from human activities is one of the major stresses affecting coastal ecosystems. There is increasing concern in many areas around the world that an oversupply of nutrients from multiple sources is having pervasive ecological effects on shallow coastal and estuarine areas. These effects include reduced light penetration, loss of aquatic habitat, harmfid algal blooms, a decrease in dissolved oxygen (or hypoxia), and impacts on living resources. The largest zone of oxygen-depleted coastal waters in the United States, and the entire western Atlantic Ocean, is found in the northern Gulf of Mexico on the Louisiana-Texas continental shelf. This zone is influenced by the freshwater discharge and nutrient flux of the Mississippi River system. This report describes the seasonal, interannual, and long-term variability in hypoxia in the northern Gulf of Mexico and its relationship to nutrient loading. It also documents the relative roles of natural and human-induced factors in determining the size and duration of the hypoxic zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past one hundred and fifty years, the landscape and ecosystems of the Pacific Northwest coastal region, already subject to many variable natural forces, have been profoundly affected by human activities. In virtually every coastal watershed from the Strait of Juan de Fuca to Cape Mendocino, settlement, exploitation and development of resou?-ces have altered natural ecosystems. Vast, complex forests that once covered the region have been largely replaced by tree plantations or converted to non-forest conditions. Narrow coastal valleys, once filled with wetlands and braided streams that tempered storm runoff and provided salmon habitat, were drained, filled, or have otherwise been altered to create land for agriculture and other uses. Tideflats and saltmarshes in both large and small estuaries were filled for industrial, commercial, and other urban uses. Many estuaries, including that of the Columbia River, have been channeled, deepened, and jettied to provide for safe, reliable navigation. The prodigious rainfall in the region, once buffered by dense vegetation and complex river and stream habitat, now surges down sirfiplified stream channels laden with increased burdens of sediment and debris. Although these and many other changes have occurred incrementally over time and in widely separated areas, their sum can now be seen to have significantly affected the natural productivity of the region and, as a consequence, changed the economic structure of its human communities. This activity has taken place in a region already shaped by many interacting and dynamic natural forces. Large-scale ocean circulation patterns, which vary over long time periods, determine the strength and location of currents along the coast, and thus affect conditions in the nearshore ocean and estuaries throughout the region. Periodic seasonal differences in the weather and ocean act on shorter time scales; winters are typically wet with storms from the southwest while summers tend to be dry with winds from the northwest. Some phenomena are episodic, such as El Nifio events, which alter weather, marine habitats, and the distribution and survival of marine organisms. Other oceanic and atmospheric changes operate more slowly; over time scales of decades, centuries, and longer. Episodic geologic events also punctuate the region, such as volcanic eruptions that discharge widespread blankets of ash, frequent minor earthquakes, and major subduction zone earthquakes each 300 to 500 years that release accumulated tectonic strain, dropping stretches of ocean shoreline, inundating estuaries and coastal valleys, and triggering landslides that reshape stream profiles. While these many natural processes have altered, sometimes dramatically, the Pacific Northwest coastal region, these same processes have formed productive marine and coastal ecosystems, and many of the species in these systems have adapted to the variable environmental conditions of the region to ensure their long-term survival.