975 resultados para cholesterol-enriched diet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While selenium (Se) is an essential micronutrient for humans, epidemiological studies have raised concern that supranutritional Se intake may increase the risk to develop Type 2 diabetes mellitus (T2DM). We aimed to determine the impact of Se at a dose and source frequently ingested by humans on markers of insulin sensitivity and signalling. Male pigs were fed either a Se-adequate (0.17 mg Se/kg) or a Se-supranutritional (0.50 mg Se/kg; high-Se) diet. After 16 weeks of intervention, fasting plasma insulin and cholesterol levels were non-significantly increased in the high-Se pigs, whereas fasting glucose concentrations did not differ between the two groups. In skeletal muscle of high-Se pigs, glutathione peroxidase activity was increased, gene expression of forkhead box O1 transcription factor and peroxisomal proliferator-activated receptor- coactivator 1 were increased and gene expression of the glycolytic enzyme pyruvate kinase was decreased. In visceral adipose tissue of high-Se pigs, mRNA levels of sterol regulatory element-binding transcription factor 1 were increased, and the phosphorylation of Akt, AMP-activated kinase and mitogen-activated protein kinases was affected. In conclusion, dietary Se oversupply may affect expression and activity of proteins involved in energy metabolism in major insulin target tissues, though this is probably not sufficient to induce diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of stable isotopes surviving in human bone is fast becoming a standard response in the analysis of cemeteries. Reviewing the state of the art for Roman Britain, the author shows clear indications of a change in diet (for the better) following the Romanisation of Iron Age Britain—including more seafood, and more nutritional variety in the towns. While samples from the bones report an average of diet over the years leading up to an individual's death, carbon and nitrogen isotope signatures taken from the teeth may have a biographical element—capturing those childhood dinners. In this way migrants have been detected—as in the likely presence of Africans in Roman York. While not unexpected, these results show the increasing power of stable isotopes to comment on populations subject to demographic pressures of every kind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the substantial economic and social burden of CVD, the need to modify diet and lifestyle factors to reduce risk has become increasingly important. Milk and dairy products, being one of the main contributors to SFA intake in the UK, are a potential target for dietary SFA reduction. Supplementation of the dairy cow's diet with a source of MUFA or PUFA may have beneficial effects on consumers' CVD risk by partially replacing milk SFA, thus reducing entry of SFA into the food chain. A total of nine chronic human intervention studies have used dairy products, modified through bovine feeding, to establish their effect on CVD risk markers. Of these studies, the majority utilised modified butter as their primary test product and used changes in blood cholesterol concentrations as their main risk marker. Of the eight studies that measured blood cholesterol, four reported a significant reduction in total and LDL-cholesterol (LDL-C) following chronic consumption of modified milk and dairy products. Data from one study suggested that a significant reduction in LDL-C could be achieved in both the healthy and hypercholesterolaemic population. Thus, evidence from these studies suggests that consumption of milk and dairy products with modified fatty acid composition, compared with milk and dairy products of typical milk fat composition, may be beneficial to CVD risk in healthy and hypercholesterolaemic individuals. However, current evidence is insufficient and further work is needed to investigate the complex role of milk and cheese in CVD risk and explore the use of novel markers of CVD risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals.Objective To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period.Design Piglets (n=14) were weaned onto either an egg-based or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary (1)H NMR metabolic profile was obtained from each animal at post mortem (11 weeks).Results Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation.ConclusionThe correlation of urinary (1)H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multi-platform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strongest markers presently available are precancerous lesions (e. g. polyps or aberrant crypt foci) in humans and precancerous lesions and tumours in animal models. The only marker that presently can be used for a 'reduction of disease risk' claim (type B) for food components is 'polyp recurrence'. Type B claims cannot be made on the basis of results in animal models. All of the other biomarkers examined presently lack validation against the 'true endpoint', the tumour, and thus cannot be used for type B claims. 'Reduction of disease risk' claims in the area of 'diet-related cancer' should be based primarily on human intervention studies using relevant/acceptable endpoints. An important area for future research will be the validation of these surrogate endpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Prebiotics are food ingredients, usually non-digestible oligosaccharides, that are selectively fermented by populations of beneficial gut bacteria. Endoxylanases, altering the naturally present cereal arabinoxylans, are commonly used in the bread industry to improve dough and bread characteristics. Recently, an in situ method has been developed to produce arabinoxylan-oligosaccharides (AXOS) at high levels in breads through the use of a thermophilic endoxylanase. AXOS have demonstrated potentially prebiotic properties in that they have been observed to lead to beneficial shifts in the microbiota in vitro and in murine, poultry and human studies. METHODS: A double-blind, placebo controlled human intervention study was undertaken with 40 healthy adult volunteers to assess the impact of consumption of breads with in situ produced AXOS (containing 2.2 g AXOS) compared to non-endoxylanase treated breads. Volatile fatty acid concentrations in faeces were assessed and fluorescence in situ hybridisation was used to assess changes in gut microbial groups. Secretory immunoglobulin A (sIgA) levels in saliva were also measured. RESULTS: Consumption of AXOS-enriched breads led to increased faecal butyrate and a trend for reduced iso-valerate and fatty acids associated with protein fermentation. Faecal levels of bifidobacteria increased following initial control breads and remained elevated throughout the study. Lactobacilli levels were elevated following both placebo and AXOS-breads. No changes in salivary secretory IgA levels were observed during the study. Furthermore, no adverse effects on gastrointestinal symptoms were reported during AXOS-bread intake. CONCLUSIONS: AXOS-breads led to a potentially beneficial shift in fermentation end products and are well tolerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fat is a major contributor to energy intake in most Western diets, supplying 35–40% of food energy. It is described as being ‘energy-dense’, because a gram of fat (9 kcal/g) yields more than twice as much metabolisable energy as a gram of either carbohydrate or protein (4 kcal/g). Most of the fat we consume in our diet is in the form of triacylglycerol (90-95%), with cholesterol and phospholipids making up the bulk of the remainder. Dietary advice invariably stresses the importance of fat reduction, yet fats have diverse roles in human nutrition. They are important as a source of energy, both for immediate utilisation by the body and in laying down a storage depot (adipose tissue) for later utilisation when food intake is reduced, they act as a vehicle for the ingestion and absorption of fat-soluble vitamins, and they have diverse structural and functional roles in the body. Cholesterol is also an essential component of cell membranes and is the precursor for synthesis of hormones. This chapter describes the structure, digestion, transport and functional properties of dietary fat in the body and explains the basis of associations between fat consumption and chronic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the concentration of total selenium (Se) and the proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the post mortem tissues of female pheasants (Phasianus Colchicus Torquator) offered diets containing graded additions of selenized enriched yeast (SY) or sodium selenite (SS). Thiobarbituric acid reactive substances (TBARS) and tissue glutathione peroxidase (GSH-Px) activity of breast (Pectoralis Major) were assessed at 0 and 5 d post-mortem. A total of 216 female pheasant chicks were enrolled onto the study. 24 birds were euthanased at the start of the study and samples of blood, breast muscle, leg muscle (Peroneus Longus and M. Gastrocnemius), heart, liver, kidney and gizzard collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n=48 birds/treatment) that either differed in Se source (SY vs. SS) or dose (Con [0.2 mg total Se/kg], SY-L and SS-L [0.3 mg/kg total Se as SY and SS, respectively], and SY-H [0.45 mg total Se/kg]). Following 42 and 91 days of treatment 24 birds/treatment were euthanased and samples of blood, breast muscle, leg muscle, heart, liver, kidney and gizzard retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and TBARS were determined in breast tissue at the end of the study. There were positive responses (P<0.001) in both blood and tissues to the graded addition of SY to the diet but the same responses were not apparent in the blood and tissues of selenite supplemented birds receiving comparable doses. Although there were differences between tissue types in the distribution of SeMet and SeCys there were few differences between treatments. There were effects of treatment on erythrocyte GSH-Px activity (P = 0.012) with values being higher in treatments SY-H and SS-L when compared to the negative control and treatment SY-L. There were no effects of treatment on tissue GSH-Px activity which is reflected in the overall lack of any treatment effects on TBARS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ‘trophic level enrichment’ between diet and body results in an overall increase in nitrogen isotopic values as the food chain is ascended. Quantifying the diet–body Δ15N spacing has proved difficult, particularly for humans. The value is usually assumed to be +3-5‰ in the archaeological literature. We report here the first (to our knowledge) data from humans on isotopically known diets, comparing dietary intake and a body tissue sample, that of red blood cells. Samples were taken from 11 subjects on controlled diets for a 30-d period, where the controlled diets were designed to match each individual’s habitual diet, thus reducing problems with short-term changes in diet causing isotopic changes in the body pool. The Δ15Ndiet-RBC was measured as +3.5‰. Using measured offsets from other studies, we estimate the human Δ15Ndiet-keratin as +5.0-5.3‰, which is in good agreement with values derived from the two other studies using individual diet records. We also estimate a value for Δ15Ndiet-collagen of ≈6‰, again in combination with measured offsets from other studies. This value is larger than usually assumed in palaeodietary studies, which suggests that the proportion of animal protein in prehistoric human diet may have often been overestimated in isotopic studies of palaeodiet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyphenols are suggested to have human health benefits, yet debate still exists over their value in the diet. This review examines their efficacy and the effect of structural diversity on their reactivity and any implications this may have with respect to possible unfavourable adverse effects. We propose that polyphenols are of benefit to humans through dietary consumption, yet care should be taken over excessive consumption, particularly in some subgroups of the population, e.g. those on certain medications because of complex nutrient–drug interactions. Pharmaceutical application should be avoided until there is greater understanding of absorption and behaviour of polyphenols within the body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The response of plasma lipids to dietary fat manipulation is highly heterogeneous, with some indications that APOE genotype may be important. Objective: The objective was to use a prospective recruitment approach to determine the effect of dietary fat quantity and composition on both lipid and nonlipid cardiovascular disease biomarkers according to APOE genotype. Design: Participants had a mean (±SD) age of 51 ± 9 y and a BMI (in kg/m2) of 26.0 ± 3.8 (n = 44 E3/E3, n = 44 E3/E4) and followed a sequential dietary intervention (the SATgenϵ study) in which they were assigned to a low-fat diet, a high-fat high-SFA (HSF) diet, and the HSF diet with 3.45 g DHA/d (HSF-DHA), each for 8 wk. Fasting blood samples were collected at the end of each intervention arm. Results: An overall diet effect was evident for all cholesterol fractions (P < 0.01), with no significant genotype × diet interactions observed. A genotype × diet interaction (P = 0.033) was evident for plasma triglycerides, with 17% and 30% decreases in APOE3/E3 and APOE3/E4 individuals after the HSF-DHA diet relative to the low-fat diet. A significant genotype × diet interaction (P = 0.009) was also observed for C-reactive protein (CRP), with only significant increases in concentrations after the HSF and HSF-DHA diets relative to the low-fat diet in the APOE3/E4 group (P < 0.015). Conclusions: Relative to the wild-type APOE3/E3 group, our results indicate a greater sensitivity of fasting triglycerides and CRP to dietary fat manipulation in those with an APOE3/E4 genotype (25% population), with no effect of this allelic profile on cholesterol concentrations. The SATgenϵ study was registered at clinicaltrials.gov as NCT01384032.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity has become a major global health problem. Recently, attention has focused on the benefits of fermentable carbohydrates on modulating metabolism. Here, we take a system approach to investigate the physiological effects of supplementation with oligofructose-enriched inulin (In). We hypothesize that supplementation with this fermentable carbohydrate will not only lead to changes in body weight and composition, but also to modulation in neuronal activation in the hypothalamus. Male C57BL/6 mice were maintained on a normal chow diet (control) or a high fat (HF) diet supplemented with either oligofructose-enriched In or corn starch (Cs) for 9 weeks. Compared to HF+Cs diet, In supplementation led to significant reduction in average daily weight gain (mean ± s.e.m.: 0.19 ± 0.01 g vs. 0.26 ± 0.02 g, P < 0.01), total body adiposity (24.9 ± 1.2% vs. 30.7 ± 1.4%, P < 0.01), and lowered liver fat content (11.7 ± 1.7% vs. 23.8 ± 3.4%, P < 0.01). Significant changes were also observed in fecal bacterial distribution, with increases in both Bifidobacteria and Lactobacillius and a significant increase in short chain fatty acids (SCFA). Using manganese-enhanced MRI (MEMRI), we observed a significant increase in neuronal activation within the arcuate nucleus (ARC) of animals that received In supplementation compared to those fed HF+Cs diet. In conclusion, we have demonstrated for the first time, in the same animal, a wide range of beneficial metabolic effects following supplementation of a HF diet with oligofructose-enriched In, as well as significant changes in hypothalamic neuronal activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals. Objective: To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period. Design: Piglets (n¼14) were weaned onto either an eggbased or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary 1H NMR metabolic profile was obtained from each animal at post mortem (11 weeks). Results: Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation. Conclusion: The correlation of urinary 1H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multiplatform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.