962 resultados para chemical sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses possess very specific methods of targeting and entering cells. These methods would be extremely useful if they could also be applied to drug delivery, but little is known about the molecular mechanisms of the viral entry process. In order to gain further insight into mechanisms of viral entry, chemical and spectroscopic studies in two systems were conducted, examining hydrophobic protein-lipid interactions during Sendai virus membrane fusion, and the kinetics of bacteriophage λ DNA injection.

Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator3-(trifluoromethyl)-3-(m-^(125 )I] iodophenyl)diazirine (TID). The probe was incorporated in target membranes prior to virus addition and photolysis. During Sendai virus fusion with liposomes composed of cardiolipin (CL) or phosphatidylserine (PS), the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F_1 subunit with the target membrane is an initiating event in fusion. Correlation of the hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. Separation of proteins after labeling shows that the F_1 subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and that the F_2 subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions, after titration of acidic amino acids. HN labeling under nonfusogenic conditions reveals that viral binding may involve hydrophobic as well as electrostatic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions.

Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes, and that HN binding may involve hydrophobic interactions as well. Labeling of the erythrocyte membranes revealed close membrane association of spectrin, which may play a role in regulating membrane fusion. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion. Correlation of these results with earlier studies of membrane hydration and fusion kinetics provides a more detailed view of the mechanism of fusion.

The kinetics of DNA injection by bacteriophage λ. into liposomes bearing reconstituted receptors were measured using fluorescence spectroscopy. LamB, the bacteriophage receptor, was extracted from bacteria and reconstituted into liposomes by detergent removal dialysis. The DNA binding fluorophore ethidium bromide was encapsulated in the liposomes during dialysis. Enhanced fluorescence of ethidium bromide upon binding to injected DNA was monitored, and showed that injection is a rapid, one-step process. The bimolecular rate law, determined by the method of initial rates, revealed that injection occurs several times faster than indicated by earlier studies employing indirect assays.

It is hoped that these studies will increase the understanding of the mechanisms of virus entry into cells, and to facilitate the development of virus-mimetic drug delivery strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high computational cost of correlated wavefunction theory (WFT) calculations has motivated the development of numerous methods to partition the description of large chemical systems into smaller subsystem calculations. For example, WFT-in-DFT embedding methods facilitate the partitioning of a system into two subsystems: a subsystem A that is treated using an accurate WFT method, and a subsystem B that is treated using a more efficient Kohn-Sham density functional theory (KS-DFT) method. Representation of the interactions between subsystems is non-trivial, and often requires the use of approximate kinetic energy functionals or computationally challenging optimized effective potential calculations; however, it has recently been shown that these challenges can be eliminated through the use of a projection operator. This dissertation describes the development and application of embedding methods that enable accurate and efficient calculation of the properties of large chemical systems.

Chapter 1 introduces a method for efficiently performing projection-based WFT-in-DFT embedding calculations on large systems. This is accomplished by using a truncated basis set representation of the subsystem A wavefunction. We show that naive truncation of the basis set associated with subsystem A can lead to large numerical artifacts, and present an approach for systematically controlling these artifacts.

Chapter 2 describes the application of the projection-based embedding method to investigate the oxidative stability of lithium-ion batteries. We study the oxidation potentials of mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC) by using the projection-based embedding method to calculate the vertical ionization energy (IE) of individual molecules at the CCSD(T) level of theory, while explicitly accounting for the solvent using DFT. Interestingly, we reveal that large contributions to the solvation properties of DMC originate from quadrupolar interactions, resulting in a much larger solvent reorganization energy than that predicted using simple dielectric continuum models. Demonstration that the solvation properties of EC and DMC are governed by fundamentally different intermolecular interactions provides insight into key aspects of lithium-ion batteries, with relevance to electrolyte decomposition processes, solid-electrolyte interphase formation, and the local solvation environment of lithium cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.

In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.

Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.

We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes applications of cavity enhanced spectroscopy towards applications of remote sensing, chemical kinetics and detection of transient radical molecular species. Both direct absorption spectroscopy and cavity ring-down spectroscopy are used in this work. Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was utilized for measurements of spectral lineshapes of O2 and CO2 for obtaining laboratory reference data in support of NASA’s OCO-2 mission. FS-CRDS is highly sensitive (> 10 km absorption path length) and precise (> 10000:1 SNR), making it ideal to study subtle non-Voigt lineshape effects. In addition, these advantages of FS-CRDS were further extended for measuring kinetic isotope effects: A dual-wavelength variation of FS-CRDS was used for measuring precise D/H and 13C/12C methane isotope ratios (sigma>0.026%) for the purpose of measuring the temperature dependent kinetic isotope effects of methane oxidation with O(1D) and OH radicals. Finally, direct absorption spectroscopic detection of the trans-DOCO radical via a frequency combs spectrometer was conducted in collaboration with professor Jun Ye at JILA/University of Colorado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals.

The first part of the thesis presents the discovery and development of Zn-IV nitride materials.The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1−xN2 series as a replacement for III-nitrides is discussed here.

The second half of the thesis shows ab−initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown.

Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This abbreviated translation summarises the chemical composition of Iraq water resources. Among the described water bodies are the River Euphrates, Shatt al Arab River and a number of standing waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A progress report on research undertaken on the chemical budget of a lake, outlining the importance of nitrogen and phosphorus in governing the production of life in freshwater. The report uses the Rivers Brathay and Leven, which flow into Windermere, as examples. The report also refers to the Rivers Rothay, Troutbeck and Cunsey. A table is including which shows the monthly average nitrate content (mg per litre) of the River Brathey and River Leven for 1937 into 1938. The report also includes a figure showing Windermere lake levels, discharge and rainfall during 1937. It also briefly considers possible anthropogenic influences on water quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An article reviewing the work undertaken looking at the seasonal variation of chemical conditions in water at various depths in lakes. The laboratory tests undertaken for the research is outlined, as well as details of the sampling locations and the staff involved with the work. One figure shows the seasonal variation in the amounts of dissolved substances in the surface water of Windermere during 1936. Another figure shows seasonal varation inthe dry weight of phyto- and zooplankton in Windermere. Seasonal changes are discussed further and a table is included showing chemical conditions in winter and summer for Windermere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area studied was the River Frome system below Dorchester. The main river has its origins mainly in chalk springs, although some of its tributaries have surface run-off from farm lands and heath-lands. Thus the chemistry of the river is affected by changes in land practice and differences in the geology of the catchment area. Regular chemical analysis of chalk waters started at the River Laboratory in 1964, Regular weekly analyses have been carried out since 1965 at Bere Stream (a small chalk stream) and the River Frome (a large chalk stream); also single samples have been analysed to provide preliminary information. In 1970-71 an attempt was made to discover the contribution each main source made to the flow and chemical composition of the River Frome. Results of these investigations are presented in the paper.