972 resultados para chemical properties
Resumo:
BACKGROUND: Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production. Various ASOs with different chemical properties are suitable for these applications, including a morpholino oligomer (MO) variant with a particularly excellent safety and efficacy profile. OBJECTIVE: We investigated a 25-nt MO sequence targeting the negative intronic splicing silencer (ISS-N1) 10 to 34 region. METHODS: We administered a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) in the SMAΔ7 mouse model and evaluated the effect and neuropathologic phenotype. We tested different concentrations (from 2 to 24 nM) and delivery protocols (intracerebroventricular injection, systemic injection, or both). We evaluated the treatment efficacy regarding SMN levels, survival, neuromuscular phenotype, and neuropathologic features. RESULTS: We found that a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) exhibited superior efficacy in transgenic SMAΔ7 mice compared with previously described sequences. In our experiments, the combination of local and systemic administration of MO (bare or conjugated to octaguanidine) was the most effective approach for increasing full-length SMN expression, leading to robust improvement in neuropathologic features and survival. Moreover, we found that several small nuclear RNAs were deregulated in SMA mice and that their levels were restored by MO treatment. CONCLUSION: These results indicate that MO-mediated SMA therapy is efficacious and can result in phenotypic rescue, providing important insights for further development of ASO-based therapeutic strategies in SMA patients.
Resumo:
Objective Homeopathic globules are commonly used in clinical practice, while research focuses on liquid potencies. Sequential dilution and succussion in their production process has been proposed to change the physico-chemical properties of the solvent(s). It has been reported that aqueous potencies of various starting materials showed significant differences in ultraviolet light transmission compared to controls and between different dilution levels. The aim of the present study was to repeat and expand these experiments to homeopathic globules. Methods Globules were specially produced for this study by Spagyros AG (Gümligen, Switzerland) from 6 starting materials (Aconitum napellus, Atropa belladonna, phosphorus, sulfur, Apis mellifica, quartz) and for 6 dilution levels (6x, 12x, 30c, 200c, 200CF (centesimal discontinuous fluxion), 10,000CF). Native globules and globules impregnated with solvents were used as controls. Globules were dissolved in ultrapure water, and absorbance in the ultraviolet range was measured. The average absorbance from 200 to 340 nm was calculated and corrected for differences between measurement days and instrumental drift. Results Statistically significant differences were found for A. napellus, sulfur, and A. mellifica when normalized average absorbance of the various dilution levels from the same starting material (including control and solvent control globules) was compared. Additionally, absorbance within dilution levels was compared among the various starting materials. Statistically significant differences were found among 30c, 200c and 200CF dilutions. Conclusion This study has expanded previous findings from aqueous potencies to globules and may indicate that characteristics of aqueous high dilutions may be preserved and detectable in dissolved globules.
Resumo:
Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.
Resumo:
The surface of Mars is host to many regions displaying polygonal crack patterns that have been identified as potential desiccation cracks. These regions are mostly within Noachian-aged terrains and are closely associated with phyllosilicate occurrences and smectites in particular. We have built a laboratory setup that allows us to carry out desiccation experiments on Mars-analog materials in an effort to constrain the physical and chemical properties of sediments that display polygonal cracks. The setup is complemented by a pre-existing simulation chamber that enables the investigation of the spectral and photometric properties of analog materials in Mars-like conditions. The initial experiments that have been carried out show that (1) crack patterns are visible in smectite-bearing materials in varying concentrations down to similar to 10% smectite by weight, (2) chlorides, and potentially other salts, delay the onset of cracking and may even block it from occurring entirely, and (3) the polygonal patterns, while being indicative of the presence of phyllosilicates, cannot be used to differentiate between various phyllosilicate-bearing deposits. However, their size-scale and morphology yields important information regarding their thickness and the hydrological conditions at the time of formation. Furthermore, the complementary spectral measurements for some of the analog samples shows that crack patterns may develop in materials with such low concentrations of smectites that would not be expected to be identified using remote-sensing instruments. This may explain the presence of polygonal patterns on Mars in sediments that lack spectral confirmation of phyllosilicates. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Theoretical and empirical studies were conducted on the pattern of nucleotide and amino acid substitution in evolution, taking into account the effects of mutation at the nucleotide level and purifying selection at the amino acid level. A theoretical model for predicting the evolutionary change in electrophoretic mobility of a protein was also developed by using information on the pattern of amino acid substitution. The specific problems studied and the main results obtained are as follows: (1) Estimation of the pattern of nucleotide substitution in DNA nuclear genomes. The pattern of point mutations and nucleotide substitutions among the four different nucleotides are inferred from the evolutionary changes of pseudogenes and functional genes, respectively. Both patterns are non-random, the rate of change varying considerably with nucleotide pair, and that in both cases transitions occur somewhat more frequently than transversions. In protein evolution, substitution occurs more often between amino acids with similar physico-chemical properties than between dissimilar amino acids. (2) Estimation of the pattern of nucleotide substitution in RNA genomes. The majority of mutations in retroviruses accumulate at the reverse transcription stage. Selection at the amino acid level is very weak, and almost non-existent between synonymous codons. The pattern of mutation is very different from that in DNA genomes. Nevertheless, the pattern of purifying selection at the amino acid level is similar to that in DNA genomes, although selection intensity is much weaker. (3) Evaluation of the determinants of molecular evolutionary rates in protein-coding genes. Based on rates of nucleotide substitution for mammalian genes, the rate of amino acid substitution of a protein is determined by its amino acid composition. The content of glycine is shown to correlate strongly and negatively with the rate of substitution. Empirical formulae, called indices of mutability, are developed in order to predict the rate of molecular evolution of a protein from data on its amino acid sequence. (4) Studies on the evolutionary patterns of electrophoretic mobility of proteins. A theoretical model was constructed that predicts the electric charge of a protein at any given pH and its isoelectric point from data on its primary and quaternary structures. Using this model, the evolutionary change in electrophoretic mobilities of different proteins and the expected amount of electrophoretically hidden genetic variation were studied. In the absence of selection for the pI value, proteins will on the average evolve toward a mildly basic pI. (Abstract shortened with permission of author.) ^
Resumo:
Inland wetlands are valuable natural resources intimately associated with the hydrologic cycle. This study was designed to (1) investigate vegetation distribution and selected physical and chemical properties of wetland and bordering upland soils and the interface between the two, and (2) provide the ground truth necessary for the identification and delineation of deciduous wetland forests using false-color infrared (FCIR) imagery.
Resumo:
Membranes are essential for the integrity and function of the cell. The collective property of the lipid bilayer is critical in providing an optimal functioning environment for membrane proteins. The simple yet well-characterized bacterium Escherichia coli serves an ideal model system to study the function of specific lipids since its lipid content can be easily manipulated. The most abundant lipid in E. coli membrane is phosphatidylethanolamine (PE, 70-80%). A PE-lacking E. coli mutant displays a complex mixture of deficient phenotypes, suggesting a profound role for PE in different aspects of cell function. A novel role of PE as a topological and functional determinant for membrane proteins has been established using lactose permease (LacY) as a model protein. PE is found to be required for energy-dependent uphill transport process of LacY. In PE-lacking membranes, LacY undergoes a dramatic conformational change, and the first half of the protein adopts an inverted topology with respect to the bilayer plane. ^ The work reported here was initiated to understand the molecular properties of lipids that enable their function as topological and functional determinants for membrane proteins. A glycolipid, monoglucosyldiacylglycerol (MGlcDAG) which shares physicochemical similarities with PE, was introduced to PE-lacking E. coli membranes. The introduction of MGlcDAG suppresses many of the PE-deficient phenotypes, and in particular supports the function and native topology of LacY. ^ The lipid-sensitive topogenic signals encoded in the amino acid sequence of LacY were also identified. Native LacY adopts an inverted topology when synthesized without PE, but mutation of specific acidic residues in the cytoplasmic extra-membrane domains can prevent this inversion and supports a native topological organization of LacY in PE-lacking membranes. These results suggest that it is the interplay between the collective charge properties of the lipid bilayer and extra-membrane loops of protein that determines the final orientation of transmembrane domains. By comparing the similarities as well as differences between these two lipids, we established how specific physical and chemical properties of lipids influence various cell functions and elucidated the molecular basis for the novel role of lipids in determining membrane protein topology. ^
Resumo:
Tillage system and crop rotation have a significant, long-term effect on soil productivity and soil quality components such as soil carbon and other soil physical, biological, and chemical properties. In addition, both tillage and crop rotation have effects on weed and soil disease control. There is a definite need for well-defined, long-term tillage and crop rotation studies across the different soils and climate conditions in the state. The objective of this study was to evaluate the long-term effects of different tillage systems and crop rotations on soil productivity
Resumo:
Tillage system and crop rotation have a major long-term effect on soil productivity and soil quality components such as soil carbon and other soil physical, biological, and chemical properties. In addition, both tillage and crop rotation have effects on weed and soil disease control. There is a need for well-defined, longterm tillage and crop rotation studies across the different soils and climate conditions in the state. The objective of this study was to evaluate the long-term effects of different tillage systems and crop rotations on soil productivity.
Resumo:
The Sea Ice Mass Balance in the Antarctic (SIMBA) experiment was conducted from the RVIB N.B. Palmer in September and October 2007 in the Bellingshausen Sea in an area recently experiencing considerable changes in both climate and sea ice cover. Snow and ice properties were observed at 3 short-term stations and a 27-day drift station (Ice Station Belgica, ISB) during the winter-spring transition. Repeat measurements were performed on sea ice and snow cover at 5 ISB sites, each having different physical characteristics, with mean ice (snow) thicknesses varying from 0.6 m (0.1 m) to 2.3 m (0.7 m). Ice cores retrieved every five days from 2 sites and measured for physical, biological, and chemical properties. Three ice mass-balance buoys (IMBs) provided continuous records of snow and ice thickness and temperature. Meteorological conditions changed from warm fronts with high winds and precipitation followed by cold and calm periods through four cycles during ISB. The snow cover regulated temperature flux and controlled the physical regime in which sea ice morphology changed. Level thin ice areas had little snow accumulation and experienced greater thermal fluctuations resulting in brine salinity and volume changes, and winter maximum thermodynamic growth of ~0.6 m in this region. Flooding and snow-ice formation occurred during cold spells in ice and snow of intermediate thickness. In contrast, little snow-ice formed in flooded areas with thicker ice and snow cover, instead nearly isothermal, highly permeable ice persisted. In spring, short-lived cold air episodes did not effectively penetrate the sea ice nor overcome the effect of ocean heat flux, thus favoring net ice thinning from bottom melt over ice thickening from snow-ice growth, in all cases. These warm ice conditions were consistent with regional remote sensing observations of earlier ice breakup and a shorter sea ice season, more recently observed in the Bellingshausen Sea.
Resumo:
n the framework of the FRUELA project, two oceanographic surveys were conducted by R/V Hespérides in the eastern Bellingshausen Sea, western basin of the Bransfield Strait and Gerlache Strait area during December 1995 and January 1996. The main hydrographic structures of the study domain were the Southern Boundary of the ACC and the Bransfield Front. The characteristics and zonation of local water masses are discussed in terms of temperature, salinity, dissolved oxygen, nutrient and inorganic carbon concentrations. Concentration intervals for water mass labelling, on the basis of chemical parameters in addition to the common theta/S-based classification, are defined. Silicate seems to be a very good discriminator for local water masses.
Resumo:
En este trabajo se caracterizaron las propiedades químicas del horizonte A de los suelos desarrollados a partir de distintos materiales originarios, sobre los cuales habitan bosques de Austrocedrus chilensis. Se seleccionaron cinco sitios, ubicados en el Valle 16 de Octubre y en el Parque Nacional Los Alerces de la Provincia del Chubut, Argentina. De cada sitio se tomaron muestras compuestas del horizonte A para la caracterización de las propiedades químicas. Todos los suelos analizados presentaron elevados contenidos de materia orgánica y nitrógeno. Los suelos originados a partir de materiales glaciarios presentaron los máximos valores de bases de intercambio, capacidad de intercambio catiónico y contenido de fósforo, diferenciándose significativamente de los suelos volcánicos. Dentro de los suelos volcánicos se detectaron diferencias en función de la granulometría del material: los suelos derivados de ceniza (< 2mm) tendieron a presentar mayores valores de capacidad de intercambio catiónico y bases de intercambio que los suelos de pumita (> 2mm).
Resumo:
Este estudio tuvo por objetivo caracterizar la fertilidad química del suelo superficial nueve meses después de la ocurrencia de fuegos en dos tipos de formaciones del bosque andino patagónico: Nothofagus antarctica y Austrocedrus chilensis. El área de estudio se centró en un sector de suelos de ceniza volcánica que fue afectado por el incendio denominado La Colisión (Chubut, Argentina, febrero 2008) y posteriormente cubierto por ceniza volcánica proveniente del volcán Chaitén (mayo 2008). Se tomaron muestras compuestas de suelo mineral a dos profundidades (0-5 cm y 5-10 cm) en un sector de bosque de N. antarctica y un sector de bosque de A. chilensis, considerando tres niveles de afectación por fuego (control no quemado, poco quemado, muy quemado). En las muestras más superficiales (i.e., 0-5 cm) hubo aumentos significativos de pH y conductividad eléctrica, y disminución de los contenidos de materia orgánica, nitrógeno total, CIC y sodio, como consecuencia del fuego. Las muestras de 5-10 cm evidenciaron disminución de materia orgánica y nitrógeno total y aumento de azufre. El mayor contenido de azufre en los bosques quemados y el aumento observado de fósforo en suelos alofanizados con bajo grado de afectación por fuego, podrían ser beneficiosos para la recuperación de la vegetación.
Resumo:
High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene-Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest delta 13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity. Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm-oligotrophic scenario with a high degree of complexity in the ocean structure.