970 resultados para characteristic
Resumo:
The thesis aims at investigating the local dimension of the EU cohesion policy through the utilization of an alternative approach, which aims at the analysis of discourse and structures of power. The concrete case under analysis is the Interreg IV programme “Alpenrhein-Bodensee-Hochrhein”, which is conducted in the border region between Germany, Switzerland, Austria and the principality of Liechtenstein. The main research question is stated as such: What governmental rationalities can be found at work in the field of EU cross-border cooperation programmes? How is directive action and cooperation envisioned? How coherent are the different rationalities, which are found at work? The theoretical framework is based on a Foucaultian understanding of power and discourse and utilizes the notion of governmentalities as a way to de-stabilize the understanding of directive action and in order to highlight the dispersed and heterogeneous nature of governmental activity. The approach is situated within the general field of research on the European Union connected to basic conceptualisations such as the nature of power, the role of discourse and modes of subjectification. An approach termed “analytics of government”, based on the work of researchers like Mitchell Dean is introduced as the basic framework for the analysis. Four dimensions (visiblities, subjectivities, techniques/practices, problematisations) are presented as a set of tools with which governmental regimes of practices can be analysed. The empirical part of the thesis starts out with a discussion of the general framework of the European Union's cohesion policy and places the Interreg IV Alpenrhein-Bodensee-Hochrhein programme in this general context. The main analysis is based on eleven interviews which were conducted with different individuals, participating in the programme on different levels. The selection of interview partners aimed at maximising heterogeneity through including individuals from all parts of the programme region, obtaining different functions within the programme. The analysis reveals interesting aspects pertaining to the implementation and routine aspects of work within initiatives conducted under the heading of the EU cohesion policy. The central aspects of an Interreg IV Alpenrhein-Bodensee-Hochrhein – governmentality are sketched out. This includes a positive perception of the work atmosphere, administrative/professional characterisation of the selves and a de-politicization of the programme. Characteristic is the experience of tensions by interview partners and the use of discoursive strategies to resolve them. Negative perceptions play an important role for the specific governmental rationality. The thesis contributes to a better understanding of the local dimension of the European Union cohesion policy and questions established ways of thinking about governmental activity. It provides an insight into the working of power mechanisms in the constitution of fields of discourse and points out matters of practical importance as well as subsequent research questions.
Resumo:
Characterization of melting process in a Phase Change Material (PCM)-based heat sink with plate fin type thermal conductivity enhancers (TCEs) is numerically studied in this paper. Detailed parametric investigations are performed to find the effect of aspect ratio of enclosure and the applied heat flux on the thermal performance of the heat sinks. Various non-dimensional numbers, such as Nusselt number (Nu), Rayleigh number (Ra), Stefan number (Ste) and Fourier number (Fo) based on a characteristic length scale, are identified as important parameters. The half fin thickness and the fin height are varied to obtain a wide range of aspect ratios of an enclosure. It is found that a single correlation of Nu with Ra is not applicable for all aspect ratios of enclosure with melt convection taken into account. To find appropriate length scales, enclosures with different aspect ratios are divided into three categories, viz. (a) shallow enclosure, (b) rectangular enclosure and (c) tall enclosure. Accordingly, an appropriate characteristic length scale is identified for each type of enclosure and correlation of Nu with Ra based on that characteristic length scale is developed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The ir-spectra in the N-H stretching region of Piv-Pro-NHMe and Boc-Pro-NHMe have been studied in carbon tetrachloride and chloroform solutions over a wide range of concentrations. Based on the concentration dependence of the N-H stretching bands, it has been shown that the characteristic N-H stretching band due to the C7 intramolecular hydrogen bond is around 3335 cm-'. Intermolecular hydrogen bonding also occurs to a small extent in these peptides, giving rise to a slight concentration dependence of the N-H stretching bands. The band around 3335 cm-* need not necessarily be due to C7 hydrogen bonds alone as proposed by Tsuboi et al. or to intermolecular hydrogen bonding alone as proposed by Maxfield et al.; this conclusion is supported by studies on Boc-Leu-NHMe, which undergoes only intermolecular hydrogen bonding We have shown that 2-Aib-Aib-OMe and Z-Aib- Ala-OMe form C7 intramolecular hydrogen bonds in addition to C5 intramolecular hydrogen bonds. The present studies also show that all the peptides studied exist in more than one conformation in solution.
Resumo:
NHCH3 (X = Gly 1, Ala 2, Aib 3, Leu 4 and D-Ala 5), have been investigated by Raman and circular dichroism (CD) spectroscopy. Solid state Raman spectra are consistent with β-turn conformations in all five peptides. These peptides exhibit similar conformations of the disulfide segment in the solid state with a characteristic disulfide stretching frequency at 519 ± 3 cm-1, indicative of a trans-gauche-gauche arrangement about the Cα—Cβ—S—S—Cβ—Cα bonds. The results correlate well with the solid state conformations determined by X-ray diffraction for peptides 3 and 4. CD studies in chloroform and dimethylsulfoxide establish solvent dependent conformational changes for peptides 1, 3 and 5. Disulfide chirality has been derived using the quadrant rule. CD results together with previously reported nuclear magnetic resonance (n.m.r.) data suggest a conformational coupling between the peptide backbone and the disulfide segment
Resumo:
Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.
Resumo:
The existing models describing electrochemical phase formation involving both adsorption and a nucleation/growth process are modified. The limiting cases leading to the existing models are discussed. The characteristic features of the potentiostatic transients are presented. A generalization of the Avrami ansatz is given for two or more competitive irreversibly growing phases.
Resumo:
From a detailed re-examination of results in the literature, the effects of microstructure sizes, namely interlamellar spacing, pearlitic colony size and the prior austentitic grain size on the thresholds for fatigue crack growth (ΔKth) and crack closure (Kcl, th) have been illustrated. It is shown that while interlamellar spacing explicitly controls yield strength, a similar effect on ΔKth cannot be expected. On the other hand, the pearlitic colony size is shown to strongly influence ΔKth and Kcl, th through the deflection and retardation of cracks at colony boundaries. Consequently, an increase in ΔKth and Kcl, th with colony size has been found. The development of a theoretical model to illustrate the effects of colony size, shear flow stress in the slip band and macroscopic yield strength on Kcl, th and ΔKth is presented. the model assumes colony boundaries as potential sites for slip band pile-up formation and subsequent crack deflection finally leading to zig-zag crack growth. Using the concepts of roughness induced crack closure, the magnitude of Kcl, th is quantified as a function of colony size. In deriving the model, the flow stress in the slip band has been considered to represent the work hardened state in pearlite. Comparison of the theoretically predicted trend with the experimental data demonstrates very good agreement. Further, the intrinsic or closure free component of the fatigue threshold, ΔKeff, th is found to be insensitive to colony size and interlamellar spacing. Using a criterion for intrinsic fatigue threshold which considers the attainment of a critical fracture stress over a characteristic distance corresponding to interlamellar spacing, ΔKth values at high R values can be estimated with reasonable accuracy. The magnitude of ΔKth as a function of colony size is then obtained by summing up the average value of experimentally obtained ΔKeff, th values and the predicted Kcl, th values as a function of colony size. Again, very good agreement of the theoretically predicted ΔKth values with those experimentally obtained has been demonstrated.
Poetics of the Nameless Middle : Japan and the West in Philosophy and Music of the Twentieth Century
Resumo:
This study investigates the affinities between philosophy, aesthetics, and music of Japan and the West. The research is based on the structuralist notion (specifically, on that found in the narratology of Algirdas Julius Greimas), that the universal grammar functions as an abstract principle, underlying all kinds of discourse. The study thus aims to demonstrate how this grammar is manifested in philosophical, aesthetic, and musical texts and how the semiotic homogeneity of these texts can be explained on this basis. Totality and belongingness are the key philosophical concepts presented herein. As distinct from logocentrism manifested as substantializations of the world of ideas , god or mind, which was characteristic of previous Western paradigms, totality was defined as the coexistence of opposites. Thus Heidegger, Merleau-Ponty, Dōgen, and Nishida often illustrated it by identifying fundamental polarities, such as being and nothing, seer and seen, truth and illusion, etc. Accordingly, totality was schematically presented as an all-encompassing middle of the semiotic square. Similar values can be found in aesthetics and arts. Instead of dialectic syntagms, differentiated unity is considered as paradigmatic and the study demonstrates how this is manifested in traditional Japanese and Heideggerian aesthetics, as well as in the aspects of music of Claude Debussy and Tōru Takemitsu.
Resumo:
The vacuum ultraviolet circular dichroism spectrum of an isolated 4 → 1 hydrogen bonded β-turn is reported. The observed spectrum of N-acetyl-Pro-Gly-Leu-OH at − 40°C in trifluoroethanol is in good agreement with the theoretically calculated CD spectrum of the β-turn conformation. This spectrum, particularly the presence of a strong negative band around 180 nm and a large ratio [θ]201/[θ]225, can be taken as a characteristic feature of the isolated β-turn conformation. These CD spectral features can thus be used to distinguish the β-turn conformation from the β-structure in solution.
Resumo:
Microwave switches operating in the X band were designed and fabricated using amorphous chalcogenide semiconductors of composition GexTeyAsz. Threshold devices were shown to operate as microwave modulators at modulation frequencies of up to 100 MHz. No delay time was observed at the highest frequency although the modulation efficiency decreased above 10 MHz owing to the finite recovery time which was approximately 0.3 × 10−8s. The devices can also be used as variolossers, the insertion loss being 0.5 dB in the OFF state and increasing on switching from 5 dB at 1 mA device current to 18 dB at 100 mA.The behaviour of the threshold switches can be explained in terms of the formation of a conducting filament in the ON state with a constant current density of 2 × 104Acm−2 that is shunted by the device capacitance. The OFF state conductivity σ varies as ωn (0.5 < n < 1) which is characteristic of hopping in localized states. However, there was evidence of a decrease in n or a saturation of the conductivity at high frequencies.As a result of phase separation memory switches require no holding current in the ON state and may be used as novel latching semiconductor phase-shifters.
Resumo:
We show that the characteristic Mn2+ d emission color from Mn2+-doped CdS nanocrystals can be tuned over as much as 40 nm, in contrast to what should be expected from such a nearly localized d-d transition. This is achieved surprisingly by a fine-tuning of the host particle diameter from 1.9 to 2.6 nm, thereby changing the overall emission color from red to yellow. Systematic experiments in conjunction with state-of-the-art ab initio calculations with full geometry optimization establish that Mn2+ ions residing at surface/subsurface regions have a distorted tetrahedral coordination resulting in a larger ligand field splitting. Consequently, these near-surface Mn2+ species exhibit a lower Mn2+ d emission energy, compared to those residing at the core of the nanocrystal with an undisturbed tetrahedral coordination. The origin of the tunability of the observed Mn2+ emission is the variation of emission contributions arising from Mn2+ doped at the core, subsurface, and surface of the host. Our findings provide a unique and easy method to identify the location of an emitting Mn2+ ion in the nanocrystal, which would be otherwise very difficult to decipher.
Resumo:
Aluminium-silicon alloy, an important material used for the construction of internal combustion engines, exhibit pressure induced distinct regimes of wear and friction; ultra-mild and mild. In this work the alloy is slid lubricated against a spherical steel pin at contact pressures characteristic of the two test regimes, at a very low sliding velocity. In both cases, the friction is controlled at the initial stages of sliding by the abrasion of the steel pin by the protruding silicon particles of the disc. The generation of nascent steel chips helps to breakdown the additive in the oil by a cationic exchange that yields chemical products of benefits to the tribology. The friction is initially controlled by abrasion, but the chemical products gain increasing importance in controlling friction with sliding time. After long times, depending on contact pressure, the chemical products determine sliding friction exclusively. In this paper, a host of mechanical and spectroscopic techniques are used to identify and characterize mechanical damage and chemical changes. Although the basic dissipation mechanisms are the same in the two regimes, the matrix remains practically unworn in the low-pressure ultra-mild wear regime. In the higher pressure regime at long sliding times a small but finite wear rate prevails. Incipient plasticity in the subsurface controls the mechanism of wear.
Resumo:
The Winkler spring model is the most convenient representation of soil support in the domain of linear elasticity for framed structure-soil interaction analyses. The closeness of the analytical results obtained using this model with those corresponding to the elastic half-space continuum has been investigated in the past for foundation beams. The findings, however, are not applicable to framed structures founded on beam or strip footings. Moreover, the past investigations employ the concept of characteristic length which does not adequately account for the stiffness contribution of the superstructure. A framed structure on beam foundation can be described parametrically by the ratios of stiffnesses of superstructure and foundation beams to that of soil. For a practical range of soil allowable pressures, the ranges of these relative stiffness ratios have been established. The present study examines the variation between interactive analyses based on Winkler springs with those using the half-space continuum over these ranges of relative stiffness ratios. The findings enable the analyst to undertake a Winkler spring-based-interaction analysis with knowledge of the likely variation of values with those derived for the more computation-intensive half-space continuum.
Resumo:
The dispersive characteristic of hydromagnetic surface waves along a plasma-plasma interface when the upper fluid moves with a uniform velocity is discussed. The region of propagation of these waves is shifted above or below depending on whether the basic velocity (uniform)Ugl0.
Resumo:
The mechanism of interaction of methoxyamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in enzyme activity, visible absorption spectra, circular dichroism and fluorescence, and by evaluating the rate constant by stopped-flow spectrophotometry. Methoxyamine can be considered as the smallest substituted aminooxy derivative of hydroxylamine. It was a reversible noncompetitive inhibitor (Ki = 25 microM) of SHMT similar to O-amino-D-serine. Like in the interaction of O-amino-D-serine and aminooxyacetic acid, the first step in the reaction was very fast. This was evident by the rapid disappearance of the enzyme-Schiff base absorbance at 425 nm with a rate constant of 1.3 x 10(3) M-1 sec-1 and CD intensity at 430 nm. Concomitantly, there was an increase in absorbance at 388 nm (intermediate I). The next step in the reaction was the unimolecular conversion (1.1 x 10(-3) sec-1) of this intermediate to the final oxime absorbing at 325 nm. The identity of the oxime was established by its characteristic fluorescence emission at 460 nm when excited at 360 nm and by high performance liquid chromatography. These results highlight the specificity in interactions of aminooxy compounds with sheep liver serine hydroxymethyltransferase and that the carboxyl group of the inhibitors enhances the rate of the initial interaction with the enzyme.