984 resultados para cerrado region from Maranhão
Resumo:
The Black Sea is the unique ecosystem with lots of geological, ecological and biological features. For full understanding of these systems it is very important to investigate and indentify the microbial communities, including how the environment shapes its genome. Despite the data obtained by different investigations about the certain groups of microorganisms, isolated as pure cultures on nutritive mediums the total microbial metagenome hasn't been analysed. During July 2014 the 9 sites along the coast in Odessa region were selected for sampling of surface marine water, isolation of total DNA and further sequence 16S rRNA analysis. The water sampling and filtration were accompanied by measurement of metadata for evaluation of how the environment influences the present microbial biodiversity.
Resumo:
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6-2.4 Ma). (2) A transitional growth phase (2.4-1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic-Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.