985 resultados para cell activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renin is an enzyme involved in the stepwise generation of angiotensin II. Juxtaglomerular cells are the main source of plasma renin, but renin activity has been detected in other cell types. In the present study we evaluated the presence of renin mRNA in adult male Wistar rat and mouse (C-57 Black/6) mesangial cells (MC) and their ability to process, store and release both the active and inactive forms of the enzyme. Active renin and total renin content obtained after trypsin treatment were estimated by angiotensinogen consumption analyzed by SDS-PAGE electrophoresis and quantified by angiotensin I generation by HPLC. Renin mRNA, detected by RT-PCR, was present in both rat and mouse MC under basal conditions. Active renin was significantly higher (P<0.05) in the cell lysate (43.5 ± 5.7 ng h-1 10(6) cells) than in the culture medium (12.5 ± 2.5 ng h-1 10(6) cells). Inactive prorenin content was similar for the intra- and extracellular compartments (9.7 ± 3.1 and 3.9 ± 0.9 ng h-1 10(6) cells). Free active renin was the predominant form found in both cell compartments. These results indicate that MC in culture are able to synthesize and translate renin mRNA probably as inactive prorenin which is mostly processed to active renin inside the cell. MC secrete both forms of the enzyme but at a lower level compared with intracellular content, suggesting that the main role of renin synthesized by MC may be the intracellular generation of angiotensin II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that exogenously generated nitric oxide (NO) inhibits smooth muscle cell proliferation. In the present study, we stimulated rabbit vascular smooth muscle cells (RVSMC) with E. coli lipopolysaccharide (LPS), a known inducer of NO synthase transcription, and established a connection between endogenous NO, phosphorylation/dephosphorylation-mediated signaling pathways, and DNA synthesis. Non-confluent RVSMC were cultured with 0, 5, 10, or 100 ng/ml of the endotoxin. NO release was increased by 86.6% (maximum effect) in low-density cell cultures stimulated with 10 ng/ml LPS as compared to non-stimulated controls. Conversely, LPS (5 to 100 ng/ml) did not lead to enhanced NO production in multilayered (high density) RVSMC. DNA synthesis measured by thymidine incorporation showed that LPS was mitogenic only to non-confluent RVSMC; furthermore, the effect was prevented statistically by aminoguanidine (AG), a potent inhibitor of the inducible NO synthase, and oxyhemoglobin, an NO scavenger. Finally, there was a cell density-dependent LPS effect on protein tyrosine phosphatase (PTP) and ERK1/ERK2 mitogen-activated protein (MAP) kinase activities. Short-term transient stimulation of ERK1/ERK2 MAP kinases was maximal at 12 min in non-confluent RVSMC and was prevented by preincubation with AG, whereas PTP activities were inhibited in these cells after 24-h LPS stimulation. Conversely, no significant LPS-mediated changes in kinase or phosphatase activities were observed in high-density cells. LPS-induced NO generation by RVSMC may switch on a cell density-dependent proliferative signaling cascade, which involves the participation of PTP and the ERK1/ERK2 MAP kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml) of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP-IV; CD26) (EC 3.4.14.5) is a membrane-anchored ectoenzyme with N-terminal exopeptidase activity that preferentially cleaves X-Pro-dipeptides. It can also be spontaneously released to act in the extracellular environment or associated with the extracellular matrix. Many hematopoietic cytokines and chemokines contain DPP-IV-susceptible N-terminal sequences. We monitored DPP-IV expression and activity in murine bone marrow and liver stroma cells which sustain hematopoiesis, myeloid precursors, skin fibroblasts, and myoblasts. RT-PCR analysis showed that all these cells produced mRNA for DPP-IV. Partially purified protein reacted with a commercial antibody to CD26. The K M values for Gly-Pro-p-nitroanilide ranged from 0.43 to 0.98 mM for the membrane-associated enzyme of connective tissue stromas, and from 6.76 to 8.86 mM for the enzyme released from the membrane, corresponding to a ten-fold difference, but only a two-fold difference in K M was found in myoblasts. K M of the released soluble enzyme decreased in the presence of glycosaminoglycans, nonsulfated polysaccharide polymers (0.8-10 µg/ml) or simple sugars (320-350 µg/ml). Purified membrane lipid rafts contained nearly 3/4 of the total cell enzyme activity, whose K M was three-fold decreased as compared to the total cell membrane pool, indicating that, in the hematopoietic environment, DPP-IV activity is essentially located in the lipid rafts. This is compatible with membrane-associated events and direct cell-cell interactions, whilst the long-range activity depending upon soluble enzyme is less probable in view of the low affinity of this form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two variants (A and B) of the widely employed Walker 256 rat tumor cells are known. When inoculated sc, the A variant produces solid, invasive, highly metastasizing tumors that cause severe systemic effects and death. We have obtained a regressive variant (AR) whose sc growth is slower, resulting in 70-80% regression followed by development of immunity against A and AR variants. Simultaneously with the beginning of tumor regression, a temporary anemia developed (~8 days duration), accompanied by marked splenomegaly (~300%) and changes in red blood cell osmotic fragility, with mean corpuscular fragility increasing from 4.1 to 6.5 g/l NaCl. The possibility was raised that plasma factors associated with the immune response induced these changes. In the present study, we identify and compare the osmotic fragility increasing activity of plasma fractions obtained from A and AR tumor bearers at different stages of tumor development. The results showed that by day 4 compounds precipitating in 60% (NH4)2SO4 and able to increase red blood cell osmotic fragility appeared in the plasma of A and AR tumor bearers. Later, these compounds disappeared from the plasma of A tumor bearers but slightly increased in the plasma of AR tumor bearers. Furthermore, by day 10, compounds precipitating between 60 and 80% (NH4)2SO4 and with similar effects appeared only in plasma of AR tumor bearers. The salt solubility, production kinetics and hemolytic activity of these compounds resemble those of the immunoglobulins. This, together with their preferential increase in rats bearing the AR variant, suggest their association with an immune response against this tumor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purification and characterization of individual antigenic proteins are essential for the understanding of the pathogenic mechanisms of mycobacteria and the immune response against them. In the present study, we used anion-exchange chromatography to fractionate cell extracts and culture supernatant proteins from Mycobacterium bovis to identify T-cell-stimulating antigens. These fractions were incubated with peripheral blood mononuclear cells (PBMC) from M. bovis-infected cattle in lymphoproliferation assays. This procedure does not denature proteins and permits the testing of mixtures of potential antigens that could be later identified. We characterized protein fractions with high stimulation indices from both culture supernatants and cell extracts. Proteins were identified by two-dimensional gel electrophoresis followed by N-terminal sequencing or MALDI-TOF. Culture supernatant fractions containing low molecular weight proteins such as ESAT6 and CFP10 and other proteins (85B, MPB70), and the novel antigens TPX and TRB-B were associated with a high stimulation index. These results reinforce the concept that some low molecular weight proteins such as ESAT6 and CFP10 play an important role in immune responses. Also, Rv3747 and L7/L12 were identified in high stimulation index cell extract fractions. These data show that protein fractions with high lymphoproliferative activity for bovine PBMC can be characterized and antigens which have been already described and new protein antigens can also be identified in these fractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients expressing estradiol receptors in melanoma cells have been reported to have a better prognosis. We therefore decided to investigate the in vitro effects of ß-estradiol and tamoxifen on the growth and tyrosinase activity of SK-Mel 23 human melanoma cells. Twenty-four-hour treatment with 0.4 nM ß-estradiol inhibited cell proliferation in 30% (0.70 ± 0.03 x 10(5) cells) and increased tyrosinase activity in 50% (7130.5 ± 376.5 cpm/10(5) cells), as compared to untreated cells (1.0 ± 0.05 x 10(5) cells and 4769 ± 25.5 cpm/10(5) cells, respectively). Both responses were completely (100%) blocked by 1 µM tamoxifen. Higher concentrations (up to 1.6 nM) or longer treatments (up to 72 h) did not result in a larger effect of the hormone on proliferation or tyrosinase activity. Competition binding assays demonstrated the presence of binding sites to [2,4,6,7-³H]-ß-estradiol, and that the tritiated analogue was displaced by the unlabeled hormone (1 nM to 100 µM, Kd = 0.14 µM, maximal displacement of 93%) or by 10 µM tamoxifen (displacement of 60%). ß-estradiol also increased the phosphorylated state of two proteins of 16 and 46 kDa, after 4-h treatment, as determined by Western blot. The absorbance of each band was 1.9- and 4-fold the controls, respectively, as determined with Image-Pro Plus software. Shorter incubation periods with ß-estradiol did not enhance phosporylation; after 6-h treatment with the hormone, the two proteins returned to the control phosphorylation levels. The growth inhibition promoted by estradiol may explain the better prognosis of melanoma-bearing women as compared to men, and open new perspectives for drug therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to characterize the interactions of antagonist G (H-Arg-D-Trp-NmePhe-D-Trp-Leu-Met-NH 2)-targeted sterically stabilized liposomes with the human variant small cell lung cancer (SCLC) H82 cell line and to evaluate the antiproliferative activity of encapsulated doxorubicin against this cell line. Variant SCLC tumors are known to be more resistant to chemotherapy than classic SCLC tumors. The cellular association of antagonist G-targeted (radiolabeled) liposomes was 20-30-fold higher than that of non-targeted liposomes. Our data suggest that a maximum of 12,000 antagonist G-targeted liposomes were internalized/cell during 1-h incubation at 37ºC. Confocal microscopy experiments using pyranine-containing liposomes further confirmed that receptor-mediated endocytosis occurred, specifically in the case of targeted liposomes. In any of the previously mentioned experiments, the binding and endocytosis of non-targeted liposomes have revealed to be negligible. The improved cellular association of antagonist G-targeted liposomes, relative to non-targeted liposomes, resulted in an enhanced nuclear delivery (evaluated by fluorimetry) and cytotoxicity of encapsulated doxorubicin for incubation periods as short as 2 h. For an incubation of 2 h, we report IC50 values for targeted and non-targeted liposomes containing doxorubicin of 5.7 ± 3.7 and higher than 200 µM doxorubicin, respectively. Based on the present data, we may infer that receptors for antagonist G were present in H82 tumor cells and could mediate the internalization of antagonist G-targeted liposomes and the intracellular delivery of their content. Antagonist G covalently coupled to liposomal drugs may be promising for the treatment of this aggressive and highly heterogeneous disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ß-Glucans are soluble fibers with physiological functions, such as interference with absorption of sugars and reduction of serum lipid levels. The objective of the present study was to analyze the distribution of ß-glucans in different tissues of the African grass species Rhynchelytrum repens and also to evaluate their hypoglycemic activity. Leaf blades, sheaths, stems, and young leaves of R. repens were submitted to extraction with 4 M KOH. Analysis of the fractions revealed the presence of arabinose, glucose, xylose, and traces of rhamnose and galactose. The presence of ß-glucan in these fractions was confirmed by hydrolyzing the polymers with endo-ß-glucanase from Bacillus subtilis, followed by HPLC analysis of the characteristic oligosaccharides produced. The 4 M KOH fractions from different tissues were subjected to gel permeation chromatography on Sepharose 4B, with separation of polysaccharides with different degrees of polymerization, the highest molecular mass (above 2000 kDa) being found in young leaves. The molecular mass of the leaf blade polymers was similar (250 kDa) to that of maize coleoptile ß-glucan used for comparison. The 4 M KOH fraction injected into rats with streptozotocin-induced diabetes showed hypoglycemic activity, reducing blood sugar to normal levels for approximately 24 h. This performance was better than that obtained with pure ß-glucan from barley, which decreased blood sugar levels for about 4 h. These results suggest that the activity of ß-glucans from R. repens is responsible for the use of this plant extract as a hypoglycemic drug in folk medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lectin isolated from the red alga Solieria filiformis was evaluated for its effect on the growth of 8 gram-negative and 3 gram-positive bacteria cultivated in liquid medium (three independent experiments/bacterium). The lectin (500 µg/mL) stimulated the growth of the gram-positive species Bacillus cereus and inhibited the growth of the gram-negative species Serratia marcescens, Salmonella typhi, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus sp, and Pseudomonas aeruginosa at 1000 µg/mL but the lectin (10-1000 µg/mL) had no effect on the growth of the gram-positive bacteria Staphylococcus aureus and B. subtilis, or on the gram-negative bacteria Escherichia coli and Salmonella typhimurium. The purified lectin significantly reduced the cell density of gram-negative bacteria, although no changes in growth phases (log, exponential and of decline) were observed. It is possible that the interaction of S. filiformis lectin with the cell surface receptors of gram-negative bacteria promotes alterations in the flow of nutrients, which would explain the bacteriostatic effect. Growth stimulation of the gram-positive bacterium B. cereus was more marked in the presence of the lectin at a concentration of 1000 µg/mL. The stimulation of the growth of B. cereus was not observed when the lectin was previously incubated with mannan (125 µg/mL), its hapten. Thus, we suggest the involvement of the binding site of the lectin in this effect. The present study reports the first data on the inhibition and stimulation of pathogenic bacterial cells by marine alga lectins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H³]-arginine to L-[H³]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05). Maximum values (P < 0.05) were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates). MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability) being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schwann cell disturbance followed by segmental demyelination in the peripheral nervous system occurs in diabetic patients. Since Schwann cell and oligodendrocyte remyelination in the central nervous system is a well-known event in the ethidium bromide (EB) demyelinating model, the aim of this investigation was to determine the behavior of both cell types after local EB injection into the brainstem of streptozotocin diabetic rats. Adult male Wistar rats received a single intravenous injection of streptozotocin (50 mg/kg) and were submitted 10 days later to a single injection of 10 µL 0.1% (w/v) EB or 0.9% saline solution into the cisterna pontis. Ten microliters of 0.1% EB was also injected into non-diabetic rats. The animals were anesthetized and perfused through the heart 7 to 31 days after EB or saline injection and brainstem sections were collected and processed for light and transmission electron microscopy. The final balance of myelin repair in diabetic and non-diabetic rats at 31 days was compared using a semi-quantitative method. Diabetic rats presented delayed macrophage activity and lesser remyelination compared to non-diabetic rats. Although oligodendrocytes were the major remyelinating cells in the brainstem, Schwann cells invaded EB-induced lesions, first appearing at 11 days in non-diabetic rats and by 15 days in diabetic rats. Results indicate that short-term streptozotocin-induced diabetes hindered both oligodendrocyte and Schwann cell remyelination (mean remyelination scores of 2.57 ± 0.77 for oligodendrocytes and 0.67 ± 0.5 for Schwann cells) compared to non-diabetic rats (3.27 ± 0.85 and 1.38 ± 0.81, respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we investigated the in vitro anti-tumoral activities of fractions from aqueous extracts of the husk fiber of the typical A and common varieties of Cocos nucifera (Palmae). Cytotoxicity against leukemia cells was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cells (2 x 104/well) were incubated with 0, 5, 50 or 500 µg/mL high- or low-molecular weight fractions for 48 h, treated with MTT and absorbance was measured with an ELISA reader. The results showed that both varieties have almost similar antitumoral activity against the leukemia cell line K562 (60.1 ± 8.5 and 47.5 ± 11.9% for the typical A and common varieties, respectively). Separation of the crude extracts with Amicon membranes yielded fractions with molecular weights ranging in size from 1-3 kDa (fraction A) to 3-10 kDa (fraction B) and to more than 10 kDa (fraction C). Cells were treated with 500 µg/mL of these fractions and cytotoxicity was evaluated by MTT. Fractions ranging in molecular weight from 1-10 kDa had higher cytotoxicity. Interestingly, C. nucifera extracts were also active against Lucena 1, a multidrug-resistant leukemia cell line. Their cytotoxicity against this cell line was about 50% (51.9 ± 3.2 and 56.3 ± 2.9 for varieties typical A and common, respectively). Since the common C. nucifera variety is extensively cultured in Brazil and the husk fiber is its industrial by-product, the results obtained in the present study suggest that it might be a very inexpensive source of new antineoplastic and anti-multidrug resistant drugs that warrants further investigation.