960 resultados para catalytic partial oxidation of methane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten carbide, WC, has shown dissimilar thermal behavior when it is heated on changeable heating rate and flow of oxidant atmosphere. The oxidation of WC to WO3 tends to be in a single and slow kinetic step on slow heating rate and/or low flux of air. Kinetic parameters, on non-isothermal condition, could be evaluated to the oxidation of WC to heating rate below 15 degrees C min(-1) or low flow of air (10 mL min(-1)). The reaction is governed by nucleation and growth at 5 to 10 degrees C min(-1) then the tendency is to be autocatalytic, JMA and SB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathepsin D, a lysosomal aspartic protease, has been purified from porcine liver using a combination of pepstatin-A agarose and Affi-Gel Blue affinity chromatography, followed by size-exclusion chromatography. The purified protein consists of two polypeptide chains of 15 and 30 kDa, and has an isoelectric point of 6.8. Porcine liver cathepsin D has maximum activity at pH 2.5-3.0 as determined by its activity against hemoglobin, with a K-cat of 14.3 s(-1) and a k(cat)/K-M of 2.70 x 10(6) s(-1) M-1 as determined by the hydrolysis of a fluorogenic peptide substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of photoelectrocatalytic oxidation to degrade the commercially important copper-plitalocyanine dye, remazol turquoise blue 15 (RTB) was investigated. The best experimental condition was optimized, evaluating the performance of Ti/TiO2 thin-film electrodes prepared by sol-gel method in the decolourization of 32 mg L-1 RTB dye in 0.5 mol L-1 Na2SO4 pH 8 and applied potential of +1.5 V versus SCE under UV irradiation. Spectrophotometric measurements, high performance liquid chromatography, dissolved organic carbon (TOC) evaluation and stripping analysis of yielding solution obtained after 3 h of photoelectrolysis leads to 100% of absorbance removal from wavelength of 250-800 nm, 79.6% of TOC reduction and the releasing of up to 54.6% dye-bound copper (0.85 mg L-1) into the solution. Both, original and oxidized dye solution did not presented mutagenic activity with the strains TA98 and WOO of Salmonella in the presence and absence of S9 mix at the tested doses. Nevertheless, the yielding photoelectrocatalytic oxidized solution showed an increase in the acute toxicity for Vibrio fischeri bacteria, explained by copper liberation during treatment. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidative dissolution of research-grade chalcopyrite was characterized in respirometric and growth experiments with Thiobacillus ferrooxidans. In respirometric experiments with chalcopyrite, the pH of mineral salts medium increased to values that inhibited the oxygen uptake activity of T. ferrooxidans. In glycine-H 2SO 4 buffered medium the pH remained stable and oxygen uptake was not inhibited. In cultures growing with chalcopyrite as the sole source of energy, pH changes were only minor during the incubation. The redox potential values increased to about 600 mV during the bacterial oxidation of chalcopyrite in the presence and absence of additional Fe 2+, while they remained at about 350 mV in abiotic control flasks. Iron in chalcopyrite was solubilized and oxidized to Fe 3+ by T. ferrooxidans. In the abiotic controls, by comparison, less iron was solubilized and it remained as Fe 2+. Jarosite was a major solid- phase product in T. ferrooxidans cultures. The solub'flization of copper from chalcopyrite in inoculated flasks was enhanced in the presence of additional Fe 2+.Accumulation of S 0, reflecting partial oxidation of the S-entity of chalcopyrite, was apparent from the x-ray diffraction analysis of solid residues from the inoculated flasks as well the abiotic controls. © 1997 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tuberculostatic drug rifampicin has been described as a scavenger of reactive species. Additionally, the recent demonstration that oral therapy with a complex of rifampicin and horseradish peroxidase (HRP) was more effective than rifampicin alone, in an animal model of experimental leprosy, suggested the importance of redox reactions involving rifampicin and their relevance to the mechanism of action. Hence, we studied the oxidation of rifampicin catalyzed by HRP, since this enzyme may represent the prototype of peroxidation-mediated reactions. We found that the antibiotic is efficiently oxidized and that rifampicin-quinone is the product, in a reaction dependent on both HRP and hydrogen peroxide. The steady-state kinetic constants Km app (101±23 mmol/l), Vmax app (0.78±0.09 μmol/l·s-1) and kcat (5.1±0.6 s-1) were measured (n=4). The reaction rate was increased by the addition of co-substrates such as tetramethylbenzidine, salicylic acid, 5-aminosalicylic acid and paracetamol. This effect was explained by invoking an electron-transfer mechanism by which these drugs acted as mediators of rifampicin oxidation. We suggested that this drug interaction might be important at the inflammatory site. © 2005 Pharmaceutical Society of Japan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). These derivatives are highly susceptible to photooxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Photodegradation experiments were carried out by illuminating the films with white light from a halogen lamp (50W, 12 V), placed at a fixed dstance from the sample. The decay was monitored by UV-Vis and FTIR spectroscopies. The results showed that cast films are completely degraded in ca. 300 min, while LB took longer times, ca. 1000 min, i.e. 3 times the values for the cast films. The degradation process occurs in at least two stages, the rates of which were calculated assuming that the reaction follows a first order kinetics. The characteristic times for the first stage were 3.6×10-2 and 1.3×10-3 min-1 for cast and LB films, respectively. For the second stage the characteristic times were 5.6×10-2 and 5.0×10 -3 min-1. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing body of evidence that melatonin and its oxidation product, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5, 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin, a dimer of 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. On the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle. © 2007 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Streptomyces was isolated from poultry plant wastewater, showed high keratinolytic activity when cultured on feather meal medium. Optimum keratinolytic activity was observed at 40°C and pH 8.0. The enzyme also showed to be stable between 40 and 60°C. The keratinolytic activity was not inhibited by EDTA, DMSO and Tween 80. On the other hand, CaCl2, ZnCl2, and BaCl2 slightly inhibited the keratinolytic activity. The Streptomyces isolated might be useful in leather, keratin waste treatment, animal feeding industry, and also cosmetic industry. © 2008 Academic Journals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sluggish kinetics of ethanol oxidation on Pt-based electrodes is one of the major drawbacks to its use as a liquid fuel in direct ethanol fuel cells, and considerable efforts have been made to improve the reaction kinetics. Herein, we report an investigation on the effect of the Pt microstructure (well-dispersed versus agglomerated nanoparticles) and the catalyst support (carbon Vulcan, SnO2, and RuO2) on the rate of the electrochemical oxidation of ethanol and its major adsorbed intermediate, namely, carbon monoxide. By using several structural characterization techniques such as X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy, along with potentiodynamic and potentiostatic electrochemical experiments, we show that by altering both the Pt microstructure and the support, the rate of the electrochemical oxidation of ethanol can be improved up to a factor of 12 times compared to well-dispersed carbon-supported Pt nanoparticles. As a result of a combined effect, the interaction of Pt agglomerates with SnO2 yielded the highest current densities among all materials studied. The differences in the activity are discussed in terms of structural and electronic properties as well as by mass transport effects, providing valuable insights to the development of more active materials. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prepared a W/WO3/TiO2 bicomposite photoanode by simple electrochemical anodization of W foil, followed by cathodic electrodeposition of TiO2 and annealing at 450 C for 30 min. This photoanode shows good photoactivity under irradiation with UV and visible light. In optimized conditions, it promotes complete photoelectrocatalytic oxidation of 3.33 × 10-5 mol L-1 basic red 51 solution (which is used in hair dye) at 0.1 mol L-1 Na2SO4, pH 2.0, under a current density of 1.25 mA cm-2 and ultraviolet and visible radiation-total organic carbon removal is 94 and 88%, respectively. This effect paves the way for the sustainable solar-assisted remediation of water bodies contaminated with organic components of hair dyes. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation by means of annealing in appropriate atmosphere (air or O2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550 °C is responsible for reasonable oxidation, which is accelerated up to 8 times for O2-rich atmosphere. Results of surface electrical resistivity and Raman spectroscopy are in good agreement with these findings. Surprisingly, X-ray and Raman data suggest also the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)