947 resultados para breast tumor cells


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mice infected with Trypanosoma cruzi were challenged with 2x10[raised to the power of 6] cells of sarcoma 180 (ascite tumor) by i.p. route, on day seven post infection. Tumor development was followed by evaluation of weight gain, by measurement of ascitic fluid produced and enumeration of tumor cells in ascitic fluid. Infected mice were more resitant to tumor development as demonstrated by reduction in ascites formation and by reduction in the number of tumor cells in ascitic fluid, at different time intervals after tumor challenge. The number of peritoneal cells exsudated after tumor inoculation was greater in infected mice than in controls. This increased resitance of mice infected with T. cruzi to tumor development could be due to the action of macrophages activated by the infection and by the action of endotoxins absorbed from the gut or produced by the own parasite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of pancreatic glucagon secretion has been reported to be mediated by glucose, insulin and somatostatin. As no human pancreatic alpha-cell lines are available to study in vitro the relative importance of insulin and glucose in the control of pancreatic glucagon release, we investigated a patient presenting with a malignant glucagonoma who underwent surgical resection of the tumour. Functional somatostatin receptors were present as octreotide administration decreased basal glucagon and insulin secretion by 52 and 74%, respectively. The removed tumour was immunohistochemically positive for glucagon, chromogranin A and pancreatic polypeptide but negative for insulin, gastrin and somatostatin. The glucagonoma cells were also isolated and cultured in vitro. Incubation experiments revealed that change from high (10 mM) to low (1 mM) glucose concentration was unable to stimulate glucagon secretion. A dose-dependent inhibition of glucagon release by insulin was however, observed at low glucose concentration. These findings demonstrate that insulin could inhibit glucagon secretion in vitro in the absence of elevated glucose concentrations. These data suggest, as observed in vivo and in vitro in several animal studies, that glucopenia-induced glucagon secretion in humans is not mediated by a direct effect of low glucose on alpha-cells but possibly by a reduction of insulin-mediated alpha-cell suppression and/or an indirect neuronal stimulation of glucagon release.