990 resultados para binary data
Resumo:
Larval stages and adults of Procamallanus (Spirocamallanus) pereirai Annereaux, 1946 are described from naturally infected Paralonchurus brasiliensis (Steindachner) (Sciaenidae) from the coast of the State of Rio de Janeiro, Brazil. The translucent first-stage larvae have a denticulate process at the anterior end, no buccal capsule or esophagus undifferentiated into anterior muscular and posterior glandular parts and an elongate tail; third-stage larvae have a tail with three terminal projections, a buccal capsule divided into an anterior portion with 12-20 ridges running to the left and a posterior smooth portion, and an esophagus with muscular and glandular regions. Fourth-stage larvae exhibit a buccal capsule lacking a distinct basal ring with ridges running to the right and a tail with two terminal processes, as in adults. New host records are reported and their role in its life-cycle are discussed.
Resumo:
The All-Ireland Health Data Inventory. Part 1 is a catalogue of key sources of health data in the Republic and Northern Ireland. It includes relevant datasets from the major information reviews, conducted in the North and South, in the past few years. Information is essential for informed decision making and service provision. This inventory draws together information sources to facilitate such decision making. The inventory is intended as a resource for health professionals, researchers and the general public, providing the first phase of a ‘one-stop’ catalogue of health data. The datasets have been catalogued using an expanding numbering system which will allow for the inclusion of future resources. The Institute of Public Health in Ireland is in the process of expanding the Inventory to include further data sources.
Resumo:
MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
Resumo:
As life expectancy continues to rise, the prevalence of chronic conditions is increasing in our society. However, we do not know if the extra years of life gained are being spent with disability and illness, or in good health. Furthermore, it is unclear if all groups in society experience their extra years of life in the same way. This report examines patterns of health expectancies across the island of Ireland, examining any North-South and socio-economic differences as well looking at differences in data sources. The older population (aged 65 or over) on the island of Ireland is growing and becoming a larger percentage of the total population. Republic of Ireland Census 2011 revealed that 12% of the RoI population was aged 65 or over (CSO, 2012), and Northern Ireland Census 2011 revealed that 13% of the NI population was aged 65 or over (NISRA, 2012). By 2041 the population aged 65 or over is projected to reach 22% in RoI and 24% in NI (McGill, 2010). It is unclear, however, if this increasing longevity will be enjoyed equally by all strata of society.
Resumo:
Le "data mining", ou "fouille de données", est un ensemble de méthodes et de techniques attractif qui a connu une popularité fulgurante ces dernières années, spécialement dans le domaine du marketing. Le développement récent de l'analyse ou du renseignement criminel soulève des problèmatiques auxqwuelles il est tentant de d'appliquer ces méthodes et techniques. Le potentiel et la place du data mining dans le contexte de l'analyse criminelle doivent être mieux définis afin de piloter son application. Cette réflexion est menée dans le cadre du renseignement produit par des systèmes de détection et de suivi systématique de la criminalité répétitive, appelés processus de veille opérationnelle. Leur fonctionnement nécessite l'existence de patterns inscrits dans les données, et justifiés par les approches situationnelles en criminologie. Muni de ce bagage théorique, l'enjeu principal revient à explorer les possibilités de détecter ces patterns au travers des méthodes et techniques de data mining. Afin de répondre à cet objectif, une recherche est actuellement menée au Suisse à travers une approche interdisciplinaire combinant des connaissances forensiques, criminologiques et computationnelles.
Resumo:
Departmental Data Protection manual
Resumo:
Statement of departmental data protection policy
Resumo:
BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.
Resumo:
The European Surveillance of Congenital Anomalies (EUROCAT) network of population-based congenital anomaly registries is an important source of epidemiologic information on congenital anomalies in Europe covering live births, fetal deaths from 20 weeks gestation, and terminations of pregnancy for fetal anomaly. EUROCAT's policy is to strive for high-quality data, while ensuring consistency and transparency across all member registries. A set of 30 data quality indicators (DQIs) was developed to assess five key elements of data quality: completeness of case ascertainment, accuracy of diagnosis, completeness of information on EUROCAT variables, timeliness of data transmission, and availability of population denominator information. This article describes each of the individual DQIs and presents the output for each registry as well as the EUROCAT (unweighted) average, for 29 full member registries for 2004-2008. This information is also available on the EUROCAT website for previous years. The EUROCAT DQIs allow registries to evaluate their performance in relation to other registries and allows appropriate interpretations to be made of the data collected. The DQIs provide direction for improving data collection and ascertainment, and they allow annual assessment for monitoring continuous improvement. The DQI are constantly reviewed and refined to best document registry procedures and processes regarding data collection, to ensure appropriateness of DQI, and to ensure transparency so that the data collected can make a substantial and useful contribution to epidemiologic research on congenital anomalies.
Resumo:
As part of the development of the database Bgee (a dataBase for Gene Expression Evolution), we annotate and analyse expression data from different types and different sources, notably Affymetrix data from GEO and ArrayExpress, and RNA-Seq data from SRA. During our quality control procedure, we have identified duplicated content in GEO and ArrayExpress, affecting ∼14% of our data: fully or partially duplicated experiments from independent data submissions, Affymetrix chips reused in several experiments, or reused within an experiment. We present here the procedure that we have established to filter such duplicates from Affymetrix data, and our procedure to identify future potential duplicates in RNA-Seq data. Database URL: http://bgee.unil.ch/
Resumo:
High-throughput technologies are now used to generate more than one type of data from the same biological samples. To properly integrate such data, we propose using co-modules, which describe coherent patterns across paired data sets, and conceive several modular methods for their identification. We first test these methods using in silico data, demonstrating that the integrative scheme of our Ping-Pong Algorithm uncovers drug-gene associations more accurately when considering noisy or complex data. Second, we provide an extensive comparative study using the gene-expression and drug-response data from the NCI-60 cell lines. Using information from the DrugBank and the Connectivity Map databases we show that the Ping-Pong Algorithm predicts drug-gene associations significantly better than other methods. Co-modules provide insights into possible mechanisms of action for a wide range of drugs and suggest new targets for therapy
Resumo:
In this work discuss the use of the standard model for the calculation of the solvency capital requirement (SCR) when the company aims to use the specific parameters of the model on the basis of the experience of its portfolio. In particular, this analysis focuses on the formula presented in the latest quantitative impact study (2010 CEIOPS) for non-life underwriting premium and reserve risk. One of the keys of the standard model for premium and reserves risk is the correlation matrix between lines of business. In this work we present how the correlation matrix between lines of business could be estimated from a quantitative perspective, as well as the possibility of using a credibility model for the estimation of the matrix of correlation between lines of business that merge qualitative and quantitative perspective.