995 resultados para basis sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibilities and need for adaptation and mitigation depends on uncertain future developments with respect to socio-economic factors and the climate system. Scenarios are used to explore the impacts of different strategies under uncertainty. In this chapter, some scenarios are presented that are used in the ADAM project for this purpose. One scenario explores developments with no mitigation, and thus with high temperature increase and high reliance on adaptation (leading to 4oC increase by 2100 compared to pre-industrial levels). A second scenario explores an ambitious mitigation strategy (leading to 2oC increase by 2100 compared to pre-industrial levels). In the latter scenario, stringent mitigation strategies effectively reduces the risks of climate change, but based on uncertainties in the climate system a temperature increase of 3oC or more cannot be excluded. The analysis shows that, in many cases, adaptation and mitigation are not trade-offs but supplements. For example, the number of people exposed to increased water resource stress due to climate change can be substantially reduced in the mitigation scenario, but even then adaptation will be required for the remaining large numbers of people exposed to increased stress. Another example is sea level rise, for which adaptation is more cost-effective than mitigation, but mitigation can help reduce damages and the cost of adaptation. For agriculture, finally, only the scenario based on a combination of adaptation and mitigation is able to avoid serious climate change impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Molecular mechanisms underlying the links between dietary intake of flavonoids and reduced cardiovascular disease risk are only partially understood. Key events in the pathogenesis of cardiovascular disease, particularly thrombosis, are inhibited by these polyphenolic compounds via mechanisms such as inhibition of platelet activation and associated signal transduction, attenuation of generation of reactive oxygen species, enhancement of nitric oxide production and binding to thromboxane A2 receptors. In vivo, effects of flavonoids are mediated by their metabolites, but the effects and modes of action of these compounds are not well-characterized. A good understanding of flavonoid structure–activity relationships with regard to platelet function is also lacking. Experimental approach: Inhibitory potencies of structurally distinct flavonoids (quercetin, apigenin and catechin) and plasma metabolites (tamarixetin, quercetin-3′-sulphate and quercetin-3-glucuronide) for collagen-stimulated platelet aggregation and 5-hydroxytryptamine secretion were measured in human platelets. Tyrosine phosphorylation of total protein, Syk and PLCγ2 (immunoprecipitation and Western blot analyses), and Fyn kinase activity were also measured in platelets. Internalization of flavonoids and metabolites in a megakaryocytic cell line (MEG-01 cells) was studied by fluorescence confocal microscopy. Key results: The inhibitory mechanisms of these compounds included blocking Fyn kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 following internalization. Principal functional groups attributed to potent inhibition were a planar, C-4 carbonyl substituted and C-3 hydroxylated C ring in addition to a B ring catechol moiety. Conclusions and implications: The structure–activity relationship for flavonoids on platelet function presented here may be exploited to design selective inhibitors of cell signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of using a radial basis function neural network (RBFNN) to accurately recognise and predict the onset of Parkinson’s disease tremors in human subjects is discussed in this paper. The data for training the RBFNN are obtained by means of deep brain electrodes implanted in a Parkinson disease patient’s brain. The effectiveness of a RBFNN is initially demonstrated by a real case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An updated analysis of observed stratospheric temperature variability and trends is presented on the basis of satellite, radiosonde, and lidar observations. Satellite data include measurements from the series of NOAA operational instruments, including the Microwave Sounding Unit covering 1979–2007 and the Stratospheric Sounding Unit (SSU) covering 1979–2005. Radiosonde results are compared for six different data sets, incorporating a variety of homogeneity adjustments to account for changes in instrumentation and observational practices. Temperature changes in the lower stratosphere show cooling of 0.5 K/decade over much of the globe for 1979–2007, with some differences in detail among the different radiosonde and satellite data sets. Substantially larger cooling trends are observed in the Antarctic lower stratosphere during spring and summer, in association with development of the Antarctic ozone hole. Trends in the lower stratosphere derived from radiosonde data are also analyzed for a longer record (back to 1958); trends for the presatellite era (1958–1978) have a large range among the different homogenized data sets, implying large trend uncertainties. Trends in the middle and upper stratosphere have been derived from updated SSU data, taking into account changes in the SSU weighting functions due to observed atmospheric CO2 increases. The results show mean cooling of 0.5–1.5 K/decade during 1979–2005, with the greatest cooling in the upper stratosphere near 40–50 km. Temperature anomalies throughout the stratosphere were relatively constant during the decade 1995–2005. Long records of lidar temperature measurements at a few locations show reasonable agreement with SSU trends, although sampling uncertainties are large in the localized lidar measurements. Updated estimates of the solar cycle influence on stratospheric temperatures show a statistically significant signal in the tropics (30N–S), with an amplitude (solar maximum minus solar minimum) of 0.5 K (lower stratosphere) to 1.0 K (upper stratosphere).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinson's disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18–24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinson's disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the network's performance, electromyographic (EMG) signals from the patient's forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group biases based on broad category membership appear early in human development. However, like many other primates humans inhabit social worlds also characterised by small groups of social coalitions which are not demarcated by visible signs or social markers. A critical cognitive challenge for a young child is thus how to extract information concerning coalition structure when coalitions are dynamic and may lack stable and outwardly visible cues to membership. Therefore, the ability to decode behavioural cues of affiliations present in everyday social interactions between individuals would have conferred powerful selective advantages during our evolution. This would suggest that such an ability may emerge early in life, however, little research has investigated the developmental origins of such processing. The present paper will review recent empirical research which indicates that in the first 2 years of life infants achieve a host of social-cognitive abilities that make them well adapted to processing coalition-affiliations of others. We suggest that such an approach can be applied to better understand the origins of intergroup attitudes and biases. Copyright © 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial basis function networks can be trained quickly using linear optimisation once centres and other associated parameters have been initialised. The authors propose a small adjustment to a well accepted initialisation algorithm which improves the network accuracy over a range of problems. The algorithm is described and results are presented.