979 resultados para atmospheric


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time series of fCO2, SST, and fluorescence data was collected between 1995 and 1997 by a CARIOCA buoy moored at the DyFAMed station (Dynamique des Flux Atmospheriques en Mediterranée) located in the northwestern Mediterranean Sea. On seasonal timescales, the spring phytoplankton bloom decreases the surface water fCO2 to approximately 290 µatm, followed by summer heating and a strong increase in fCO2 to a maximum of approximately 510 µatm. While the DELTA fCO2 shows strong variations on seasonal timescales, the annual average air-sea disequilibrium is only 2 µatm. Temperature-normalized fCO2 shows a continued decrease in dissolved CO2 throughout the summer and fall at a rate of approximately 0.6 µatm/d. The calculated annual air-sea CO2 transfer rate is -0.10 to -0.15 moles CO2 m-2 y-1, with these low values reflecting the relatively weak wind speed regime and small annual air-sea fCO2 disequilibrium. Extrapolating this rate over the whole Mediterranean Sea would lead to a flux of approximately -3 * 10**12 to -4.5 * 10**12 grams C/y, in good agreement with other estimates. An analysis of the effects of sampling frequency on annual air-sea CO2 flux estimates showed that monthly sampling is adequate to resolve the annual CO2 flux to within approximately ±10 - 18% at this site. Annual flux estimates made using temperature-derived fCO2 based on the measured fCO2-SST correlations are in agreement with measurement-based calculations to within ± 7-10% (depending on the gas transfer parameterization used), and suggest that annual CO2 flux estimates may be reasonably well predicted in this region from satellite or model-derived SST and wind speed information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the Atlantic expedition potential gradient, small ion density and space charge density have been recorded. Laborious efforts have been taken for receiving an exact estimation of the reduction factor for the field measurements. The mean value of the potential gradient on the free Atlantic Ocean was 105 V/m. The mean daily course is in very good agreement with the results of the Carnegie Institution. Even records taken on individual days near the quator show this course. For the first time it has been attempted to correlate the potential gradient at sea and the voltage between ionosphere and earth measured over land. A narrow relation has been found in 10 cases of balloon ascents with radiosondes. A further remarkable result is, that the short periodical fluctuations of the air electric field at sea with periods of 2 to 20 minutes have amplitudes of the magnitude of the mean field strength and exist all over the oceans. Recordings of the space charge density show, that positively charged air parcels drift in the first hectometer of the air near the sea surface and produce the fluctuation of the potential gradient. A period analysis did not indicate a recognizable relation to the wind velocity up to now, although an effect of air turbulence must be involved. The concentration of small ions also has been measured occasionally. With this and mean values of the potential gradient the air earth curent density has been computed. With n+ = 310 cm**-3, n- = 220 cm**-3 the air conductivity would be Lambda = 1,14 * 10**-14 Ohm**-1 m**-1. These values are smaller than values of other authors by a factor of 2 or 3. Therefore the computed air earth current density is also smaller. The discrepancy could not be explained yet.