968 resultados para aromatic compounds
Resumo:
Eighteen novel triazole compounds containing thioamide were designed and synthesized. Their structures were confirmed by elemental analysis, H-1 NMR, IR, and MS. The title compounds exhibited certain antifungal activity. And the geometry structures of the title compounds were optimized by means of the density functional theory (DFT) method at B3LYP/6-31G* level. The quantitative structure-activity relationship (QSAR) of the title compounds was systematically investigated. A correlative equation between FA and DELH, V was well established by using the multiple linear regression (MLR). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A high performance capillary electrophoresis method with diode array detector detection for the determination of five bioactive ingredients in Tibetan medicine Elsholtzia, namely quercetin, rutin, saussurenoside, kaempferol, and oleanolic acid, has been developed. The effects of several factors, such as the acidity, concentration of running buffer, separation voltage, temperature, and SDS concentration were investigated. The optimal conditions were 44 mmol/L boric acid running buffer (pH 8.5), 45 mmol/L SDS, 16 KV voltage, 20 degrees C, and 10.0% (V/V) of acetonitrile. Under the optimum conditions, five components could be separated with a good baseline resolution within 17 min. The calibration curves showed good linear relationship over the concentration range of 5 x 10(-4)similar to 0.1 mg/mL for quercetin, rutin, saussurenoside, kaempferol, and 1 x 10(-3) similar to 0.1 mg/mL for oleanolic acid. The average recoveries of the method and RSD were ( 99.2%, 3.2%) for quercetin, (102.1%, 2.1%) for rutin, (99.4%, 1.5%) for saussurenoside, (98.9%, 1.8%) for kaempferol, and (99.0%, 2.9%) for oleanolic acid, respectively. The detection limits (S/N = 3) were 1.1 x 10(-4) mg/mL for quercetin, 2.6 x 10(-4) mg/mL for rutin, 1.8 x 10(-4) mg/mL for saussurenoside, 2.9 x 10(-4) mg/mL for kaempferol, and 6.3 x 10(-4) mg/mL for oleanolic acid, respectively. The method was simple, rapid, and reproducible and could be applied for the determination of quercetin, rutin, saussurenoside, kaempferol, and oleanolic acid in Tibetan medicine Elsholtzia, and the assay results were satisfactory.
Resumo:
A highly selective and accurate method based on derivatization with dansyl chloride coupled with liquid chromatography-mass spectrometry has been developed for identification of natural pharmacologically active phenolic compounds in extracts of Lomatogonium rotatum plants (Tibetan herbal medicine) obtained by solid-phase extraction. The number of hydroxyl groups on the dansylated phenols was estimated by LC-MS-MS analysis in positive-ion mode. Dansyl derivatization of the compounds introduced basic secondary nitrogen into the phenolic core structures and this was readily ionized when acidic HPLC mobile phases were used. MS fragmentation of the derivatives generated intense protonated molecular ions of m/z [MH](+) (phenol aglycones were transformed into the corresponding free phenols by cleavage of an aglycone bond). Collision-induced dissociation of the protonated molecule generated characteristic product ions of m/z 234 and 171 corresponding to the protonated 5-(dimethylamino)naphthalene sulfoxide and 5 -(dimethylamino) naphthalene moieties, respectively. Selected reaction monitoring based on the m/z [MH](+) to 234 and 171 transitions was highly specific for these phenolic compounds. Characteristic ions with m/z values of [MH - 234](+), [MH 2 x 234](+), and [MH - 3 x 234](+) were of great importance for estimation of the presence of multihydroxyl groups on the phenolic backbone.
Resumo:
A rapid and sensitive liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) assay for the determination of five pharmacologically active compounds (PAC) extracted from the traditional Chinese medicine, Rhodiola , namely salidroside, tyrosol, rhodionin, gallic acid, and ethyl gallate has been developed. In this method, PAC could be baseline separated and detected with DAD at 275 nm. The validation of the method, including sensitivity, linearity, repeatability, and recovery, was examined. The linear calibration curves were acquired with correlation coefficient >0.999 and the limits of detection LOD (at a signal-to-noise ratio=3:1) were between 0.058 and 1.500 mu mol/L. It was found, that the amounts of PAC varied with different species of Rhodiola . The established method is rapid and reproducible for the separation of five natural pharmacologically active compounds from extracts of Rhodiola with satisfactory results.
Resumo:
A rapid capillary electrophoresis method for the separation of five natural pharmacologically active compounds from extracted Rhodiola, namely salidroside, tyrosol, rhodionin, gallic acid and ethyl gallate has been developed. The separation of five natural pharmacologically active compounds was carried out in a fused-silica capillary with 14 mM boric acid, 30 mM SDS and 2.5% acetonitrile, adjusted to pH 10.7 with NaOH. Applied potential was 21 kV. The temperature of the capillary was maintained at 25 degreesC by the instrument thermostating system, with the correlation coefficients of 0.9805-0.9989 for migration time, and relative standards of < 3.52% for peak areas. The established method is rapid and reproducible for the separation of five natural pharmacologically compounds from extracts of Rhodiola with satisfactory results.
Resumo:
Pharmacologically active xanthone compounds isolated from Swertia przewalskii pissjauk were well separated by capillary electrophoresis (CE) within 5 min, using a running buffer of 25 mM disodium tetraborate at pH 9.0. Quantitative determination was shown to be possible because regression equations revealed a linear relationship between the peak area of each constituent and its concentration, with correlation coefficients of 0.9972-0.9994. The relative standard deviations were between 0.44%-0.73% for migration times and 2.52%-4.28% for peak areas. The dissociation constant of 1,7-O-beta-D-glucopyranosyl-8-hydroxy-3,7-dimethoxyxanthone, 1,8-dihydroxy-3, 7-dimethoxy-xanthone and 1,7-dihydroxy-3,8-dimethoxyxanthone were also measured by the CE method, giving a value of 9.04, 8.94, and 8.59, respectively.
Resumo:
Natural gas pays more important role in the society as clean fuel. Natural gas exploration has been enhanced in recent years in many countries. It also has prospective future in our country through "85" and "95" national research. Many big size gas fields have been discovered in different formations in different basins such as lower and upper Paleozoic in Erdos basin, Tertiary system in Kuche depression in Tarim basin, Triassic system in east of Sichuan basin. Because gas bearing basins had been experienced multiple tectogenesis. The characteristics of natural gases usually in one gas field are that they have multiple source rocks and are multiple maturities and formed in different ages. There has most difficult to research on the gas-rock correlation and mechanism of gas formation. Develop advanced techniques and methods and apply them to solve above problems is necessary. The research is focused on the critical techniques of geochemistry and physical simulation of gas-rock correlation and gas formation. The lists in the following are conclusions through research and lots of experiments. I 8 advanced techniques have been developed or improved about gas-rock correlation and gas migration, accumulation and formation. A series of geochemistry techniques has been developed about analyzing inclusion enclave. They are analyzing gas and liquid composition and biomarker and on-line individual carbon isotope composition in inclusion enclave. These techniques combing the inclusion homogeneous temperature can be applied to study on gas-rock correlation directly and gas migration, filling and formation ages. Technique of on-line determination individual gas carbon isotope composition in kerogen and bitumen thermal pyrolysis is developed. It is applied to determine the source of natural is kerogen thermal degradation or oil pyrolysis. Method of on-line determination individual gas carbon isotope composition in rock thermal simulation has being improved. Based on the "95"former research, on-line determination individual gas carbon isotope composition in different type of maceral and rocks thermal pyrolys is has been determined. The conclusion is that carbon isotope composition of benzene and toluene in homogenous texture kerogen thermal degradation is almost same at different maturity. By comparison, that in mixture type kerogen thermal pyrolysis jumps from step to step with the changes of maturity. This conclusion is a good proof of gas-rock dynamic correlation. 3. Biomarker of rock can be determined directly through research. It solves the problems such as long period preparing sample, light composition losing and sample contamination etc. It can be applied to research the character of source rock and mechanism of source rock expulsion and the path of hydrocarbon migration etc. 4. The process of hydrocarbon dynamic generation in source rock can be seen at every stage applying locating observation and thermal simulation of ESEM. The mechanism of hydrocarbon generation and expulsion in source rock is discussed according to the experiments. This technique is advanced in the world. 5. A sample injection system whose character is higher vacuum, lower leaks and lower blank has been built up to analyze inert gas. He,Ar,Kr and Xe can be determined continuously on one instrument and one injection. This is advanced in domestic. 7. Quality and quantity analysis of benzene ring compounds and phenolic compounds and determination of organic acid and aqueous gas analysis are applied to research the relationship between compounds in formation water and gas formation. This is another new idea to study the gas-rock correlation and gas formation. 8. Inclusion analysis data can be used to calculate the Paleo-fluid density, Paleo-geothermal gradient and Paleo-geopressure gradient and then to calculate the Paleo-fluid potential. It's also a new method to research the direction of hydrocarbon migration and accumulation. 9. Equipment of natural gas formation simulation is produced during the research to probe how the physical properties of rock affect the gas migration and accumulation and what efficiency of gas migrate and factors of gas formation and the models of different type of migration are. II study is focused on that if the source rocks of lower Paleozoic generated hydrocarbon and what the source rocks of weathered formation gas pool and the mechanism of gas formation are though many advanced techniques application. There are four conclusions. 1.The maturity of Majiagou formation source rocks is higher in south than that in north. There also have parts of the higher maturity in middle and east. Anomalous thermal pays important role in big size field formation in middle of basin. 2. The amount of gas generation in high-over maturity source rocks in lower Paleozoic is lager than that of most absorption of source rocks. Lower Paleozoic source rocks are effective source rocks. Universal bitumen exists in Ordovician source rocks to prove that Ordovician source rocks had generated hydrocarbon. Bitumen has some attribution to the middle gas pool formation. 3. Comprehensive gas-rock correlation says that natural gases of north, west, south of middle gas field of basin mainly come from lower Paleozoic source rocks. The attribution ratio of lower Paleozoic source rocks is 60%-70%. Natural gases of other areas mainly come from upper Paleozoic. The attribution ratio of upper Paleozoic source rocks is 70%. 4. Paleozoic gases migration phase of Erdos basin are also interesting. The relative abundance of gasoline aromatic is quite low especially toluene that of which is divided by that of methyl-cyclohexane is less than 0.2 in upper Paleozoic gas pool. The migration phase of upper Paleozoic gas may be aqueous phase. By comparison, the relative abundance of gasoline aromatic is higher in lower Paleozoic gas. The distribution character of gasoline gas is similar with that in source rock thermal simulation. The migration phase of it may be free phase. IH Comprehensive gas-rock correlation is also processed in Kuche depression Tarim basin. The mechanism of gas formation is probed and the gas formation model has been built up. Four conclusions list below. 1. Gases in Kuche depression come from Triassic-Jurassic coal-measure source rocks. They are high-over maturity. Comparatively, the highest maturity area is Kelasu, next is Dabei area, Yinan area. 2. Kerogen thermal degradation is main reason of the dry gas in Kuche depression. Small part of dry gas comes from oil pyrolysis. VI 3.The K12 natural gas lays out some of hydro-gas character. Oil dissolved in the gas. Hydro-gas is also a factor making the gas drier and carbon isotope composition heavier. 4. The mechanism and genesis of KL2 gas pool list as below. Overpressure has being existed in Triassic-Jurassic source rocks since Keche period. Natural gases were expulsed by episode style from overpressure source rocks. Hetero-face was main migration style of gas, oil and water at that time. The fluids transferred the pressure of source rocks when they migrated and then separated when they got in reservoir. After that, natural gas migrated up and accumulated and formed with the techno-genesis. Tectonic extrusion made the natural gas overpressure continuously. When the pressure was up to the critical pressure, the C6-C7 composition in natural gas changed. The results were that relative abundance of alkane and aromatic decreased while cycloalkane and isoparaffin increased. There was lots of natural gas filling during every tectonic. The main factors of overpressure of natural gas were tectonic extrusion and fluid transferring pressure of source rocks. Well preservation was also important in the KL2 gas pool formation. The reserves of gas can satisfy the need of pipeline where is from west to east. IV A good idea of natural gas migration and accumulation modeling whose apparent character is real core and formation condition is suggested to model the physical process of gas formation. Following is the modeling results. 1. Modeling results prove that the gas accumulation rule under cap layer and gas fraction on migration path. 2. Natural gas migration as free phase is difficult in dense rock. 3. Natural gases accumulated easily in good physical properties reservoirs where are under the plugging layer. Under the condition of that permeability of rock is more than 1 * 10~(-3)μm~(-1), the more better the physical properties and the more bigger pore of rock, the more easier the gas accumulation in there. On the contrary, natural gas canonly migrate further to accumulate in good physical properties of rock. 4. Natural gas migrate up is different from that down. Under the same situation, the amount of gas migration up is lager than that of gas migration down and the distance of migration up is 3 times as that of migration down. 5. After gas leaks from dense confining layer, the ability of its dynamic plug-back decreased apparently. Gas lost from these arils easily. These confining layer can confine again only after geology condition changes. 6. Water-wetted and capillary-blocking rocks can't block water but gases generally. The result is that water can migrate continuously through blocking rocks but the gases stay under the blocking rocks then form in there. The experiments have proved the formation model of deep basin gas.
Resumo:
A novel bonded phase for reversed-phase HPLC was synthesized in two steps. Octylamine was first reacted with beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (beta -ECTS) and then the intermediate product was coupled onto porous silica. The prepared packing was characterized by elemental analysis, solid-state C-13 NMR and Fourier transform infrared (FT-IR). Chromatographic evaluations were carried out by using a mixture of organic compounds including acidic, basic and neutral analytes and methanol-water as binary mobile phase. The results showed that the stationary phase has excellent chromatographic properties and is resistant to hydrolysis between pH = 2 similar to 8. It can be used efficiently for the separation of basic compounds.
Resumo:
The micro-pore configurations on the matrix surface were studied by SEM. The matrix of molten carbonate fuel cell (MCFC) performance was also improved by the better coordination between the reasonable radius of the micro-pores and the higher porosity of the cell matrix. The many and complicated micro-pore configurations in the cell matrix promoted the volatilization of the organic additives and the burn of polyvinyl butyral (PVB). The smooth volatilization of the organic additives and the complete burn of PVB were the significant factors for the improved MCFC performance. Oxygen diffusion controlled-burn mechanism of PVB in the cell matrix was proposed. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Separation of the acidic compounds in the ion-exchange capillary electrochromatograph (IE-CEC) with strong anion-exchange packing as the stationary phase was studied. It was observed that the electroosmotic flow (EOF) in strong anion-exchange CEC moderately changed with increase of the eluent ionic strength and decrease of the eluent pH, but the acetonitrile concentration in the eluent had almost no effect on the EOF. The EOF in Strong anion-exchange CEC with eluent of low pH value was much larger than that in RP-CEC with Spherisorb-ODS as the stationary phase. The retention of acidic compounds on the strong anion-exchange packing was relatively weak due to only partial ionization of them, and both chromatographic and electrophoretic processes contributed to separation. It was observed that the retention values of acidic compounds decreased with the increase of phosphate buffer and acetonitrile concentration in the eluent as well as the decrease of the applied voltage, and even the acidic compounds could elute before the void time. These factors also made an important contribution to the separation selectivity for tested acidic compounds, which could be separated rapidly with high column efficiency of more than 220 000 plates/m under the optimized separation conditions. (C) 2000 Elsevier Science BN. All rights reserved.
Resumo:
Ammonia synthesis over ruthenium catalysts supported on different carbon materials using Ba or K compounds as promoters has been investigated. Ba(NO3)(2), KOH, and KNO3 are used as the promoter or promoter precursor, and activated carbon (AC), activated carbon fiber (ACF). and carbon molecular sieve (CMS) are used as the support. The activity measurement for ammonia synthesis was carried out in a flow micro-reactor under mild conditions: 350-450 degreesC and 3.0 MPa. Results show that KOH promoter was more effective than KNO3. and that Ba(NO3)(2) was the most effective promoter among the three. The roles of promoters can be divided into the electronic modification of ruthenium, the neutralization of surface functional groups on the carbon support and the ruthenium precursor. The catalyst with AC as the support gave the highest ammonia concentration in the effluent among the supports used, while the catalyst with ACF as the support showed the highest turnover-frequency (TOF) value. It seems that the larger particles of Ru on the carbon supports are more active for ammonia synthesis in terms of TOF value. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.