963 resultados para architectures
Resumo:
Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.
Resumo:
This paper focuses on active networks applications and in particular on the possible interactions among these applications. Active networking is a very promising research field which has been developed recently, and which poses several interesting challenges to network designers. A number of proposals for e±cient active network architectures are already to be found in the literature. However, how two or more active network applications may interact has not being investigated so far. In this work, we consider a number of applications that have been designed to exploit the main features of active networks and we discuss what are the main benefits that these applications may derive from them. Then, we introduce some forms of interaction including interference and communications among applications, and identify the components of an active network architecture that are needed to support these forms of interaction. We conclude by presenting a brief example of an active network application exploiting the concept of interaction.
Resumo:
New conceptual ideas on network architectures have been proposed in the recent past. Current store-andforward routers are replaced by active intermediate systems, which are able to perform computations on transient packets, in a way that results very helpful for developing and deploying new protocols in a short time. This paper introduces a new routing algorithm, based on a congestion metric, and inspired by the behavior of ants in nature. The use of the Active Networks paradigm associated with a cooperative learning environment produces a robust, decentralized algorithm capable of adapting quickly to changing conditions.
Resumo:
BACKGROUND: The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei. RESULTS: Using bacteriophage-mediated immunoscreening we identified genes expressed in vivo during experimental equine glanders infection. A family of immunodominant antigens were identified that share protein domain architectures with hemagglutinins and invasins. These have been designated Burkholderia Hep_Hag autotransporter (BuHA) proteins. A total of 110/207 positive clones (53%) of a B. mallei expression library screened with sera from two infected horses belonged to this family. This contrasted with 6/189 positive clones (3%) of a B. pseudomallei expression library screened with serum from 21 patients with culture-proven melioidosis. CONCLUSION: Members of the BuHA proteins are found in other Gram-negative bacteria and have been shown to have important roles related to virulence. Compared with other bacterial species, the genomes of both B. mallei and B. pseudomallei contain a relative abundance of this family of proteins. The domain structures of these proteins suggest that they function as multimeric surface proteins that modulate interactions of the cell with the host and environment. Their effect on the cellular immune response to B. mallei and their potential as diagnostics for glanders requires further study.
Resumo:
Dendrimers and hyperbranched polymers are a relatively new class of materials with unique molecular architectures and dimensions in comparison to traditional linear polymers. This review details recent notable advances in the application of these new polymers in terms of the development of new polymeric delivery systems. Although comparatively young, the developing field of hyperbranched drug delivery devices is a rapidly maturing area and the key discoveries in drug-conjugate systems amongst others are highlighted. As a consequence of their ideal hyperbranched architectures, the utilisation of host-guest chemistries in dendrimers has been included within the scope of this review. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Helices and sheets are ubiquitous in nature. However, there are also some examples of self-assembling molecules forming supramolecular helices and sheets in unnatural systems. Unlike supramolecular sheets there are a very few examples of peptide sub-units that can be used to construct supramolecular helical architectures using the backbone hydrogen bonding functionalities of peptides. In this report we describe the design and synthesis of two single turn/bend forming peptides (Boc-Phe-Aib-Ile-OMe 1 and Boc-Ala-Leu-Aib-OMe 2) (Aib: alpha-aminoisobutyric acid) and a series of double-turn forming peptides (Boc-Phe-Aib-IIe-Aib-OMe 3, Boc-Leu-Aib-Gly-Aib-OMe 4 and Boc-gamma-Abu-Aib-Leu-Aib-OMe 5) (gamma-Abu: gamma-aminobutyric acid). It has been found that, in crystals, on self-assembly, single turn/bend forming peptides form either a supramolecular sheet (peptide 1) or a supramolecular helix (peptide 2). unlike self-associating double turn forming peptides, which have only the option of forming supramolecular helical assemblages. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A high pressure mediated (3+2) cycloaddition polymerization strategy has been employed to afford linear poly(isoxazolidine) architectures. Under these high pressure conditions this cycloaddition process was found to afford primarily endoheterocycles which when translated to the polymerization should ultimately affect the tacticity and resultant properties of the polymer. The stereoselectivity occurred as a result of a lower volume of activation for the endo-transition state and the application of a 'type-I' regime (HOMODipole-LUMODipolarophile) cycloaddition process that features secondary orbital interactions within the extended molecular orbitals. A variety of linker segments were employed in an attempt to affect the physical properties of the polymeric cycloadducts such as T-g and solubility in order to tailor these materials for use in coating applications. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Cycloaddition reactions have been employed in polymer synthesis since the mid-nineteen sixties. This critical review will highlight recent notable advances in this field. For example, [2 + 2] cycloaddition reactions have been utilized in numerous polymerizations to enable the construction of strained polymer systems such as poly(2-azetidinone)s that can, in turn, afford polyfunctional beta-amino acid derived polymers. Polymers have also been synthesized successfully via (3 + 2) cycloaddition methods utilizing both thermal and high-pressure conditions. 'Click chemistry'-a process involving the reaction of azides with olefins, has also been adopted to generate linear and hyperbranched polymer architectures in a very efficient manner. [4 + 2] Cycloadditions have also been utilized under thermal and high-pressure conditions to produce rigid polymers such as polyimides and polyphenylenes. These cycloaddition polymerization methods afford polymers with potential for use in high performance polymers applications such as high temperature resistant coatings and polymeric organic light emitting diodes.
Resumo:
The interactions of bovine serum albumin (BSA) with three ethylene oxide/butylene oxide (E/B) copolymers having different block lengths and varying molecular architectures is examined in this study in aqueous solutions. Dynamic light scattering (DLS) indicates the absence of BSA-polymer binding in micellar systems of copolymers with lengthy hydrophilic blocks. On the contrary, stable protein-polyrner aggregates were observed in the case of E18B10 block copolymer. Results from DLS and SAXS suggest the dissociation of E/B copolymer micelles in the presence of protein and the absorption of polymer chains to BSA surface. At high protein loadings, bound BSA adopts a more compact conformation in solution. The secondary structure of the protein remains essentially unaffected even at high polymer concentrations. Raman spectroscopy was used to give insight to the configurations of the bound molecules in concentrated solutions. In the vicinity of the critical gel concentration of E18B10 introduction of BSA can dramatically modify the phase diagram, inducing a gel-sol-gel transition. The overall picture of the interaction diagram of the E18B10-BSA reflects the shrinkage of the suspended particles due to destabilization of micelles induced by BSA and the gelator nature of the globular protein. SAXS and rheology were used to further characterize the structure and flow behavior of the polymer-protein hybrid gels and sols.
Resumo:
The effect of hyperbranched macromolecular architectures (dendrimers) upon chirality has received significant attention in recent years in the light of the proposal of amplification of chirality. In particular, several studies have been carried out on the chiroptical properties of dendrimers that contain a chiral core and achiral branches in order to determine if the chirality of the central core can be transmitted to the distal. region of the macromolecule. In addition to interest of a pure academic nature, the presence of such chiral conformational order would be extremely useful in the development of asymmetric catalysts. In this paper, a novel class of chiral dendrimers is described - these perfect hyperbranched macromolecules have been prepared by a convergent route by the coupling of a chiral central core based upon tris(2-aminoethyl)amine and poly(aromatic amide ester) dendritic branches. The chiral properties of these dendrimers have been investigated by detailed optical rotation studies and circular dichroism analysis; the results of these studies are described herein. (C) Wiley-VCH Verlag GmbH Co.
Resumo:
Syntactic theory provides a rich array of representational assumptions about linguistic knowledge and processes. Such detailed and independently motivated constraints on grammatical knowledge ought to play a role in sentence comprehension. However most grammar-based explanations of processing difficulty in the literature have attempted to use grammatical representations and processes per se to explain processing difficulty. They did not take into account that the description of higher cognition in mind and brain encompasses two levels: on the one hand, at the macrolevel, symbolic computation is performed, and on the other hand, at the microlevel, computation is achieved through processes within a dynamical system. One critical question is therefore how linguistic theory and dynamical systems can be unified to provide an explanation for processing effects. Here, we present such a unification for a particular account to syntactic theory: namely a parser for Stabler's Minimalist Grammars, in the framework of Smolensky's Integrated Connectionist/Symbolic architectures. In simulations we demonstrate that the connectionist minimalist parser produces predictions which mirror global empirical findings from psycholinguistic research.
Resumo:
The design space of emerging heterogenous multi-core architectures with re-configurability element makes it feasible to design mixed fine-grained and coarse-grained parallel architectures. This paper presents a hierarchical composite array design which extends the curret design space of regular array design by combining a sequence of transformations. This technique is applied to derive a new design of a pipelined parallel regular array with different dataflow between phases of computation.
Resumo:
The performance benefit when using Grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effect of the synchronization overhead, mainly due to the high variability of completion times of the different tasks, which, in turn, is due to the large heterogeneity of Grid nodes. For this reason, it is important to have models which capture the performance of such systems. In this paper we describe a queueing-network-based performance model able to accurately analyze Grid architectures, and we use the model to study a real parallel application executed in a Grid. The proposed model improves the classical modelling techniques and highlights the impact of resource heterogeneity and network latency on the application performance.
Resumo:
This paper presents the development of an autonomous surveillance UAV that competed in the Ministry of Defence Grand Challenge 2008. In order to focus on higher-level mission control, the UAV is built upon an existing commercially available stabilised R/C helicopter platform. The hardware architecture is developed to allow for non-invasion integration with the existing stabilised platform, and to enable to the distributed processing of closed loop control and mission goals. The resulting control system proved highly successful and was capable of flying within 40knott gusts. The software and safety architectures were key to the success of the research and also hold the potential for use in the development of more complex system comprising of multiple UAVs.