987 resultados para aquatic insect larvae


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides an analysis of The Life Aquatic in the context of debates around tone, irony, the Smart Film, the New Sincerity and the Quirky. It argues that Anderson is one of a small but significant number of filmmakers to escape from the indiscriminate irony of fin de sie`cle cinema, and finds The Life Aquatic Aquatic a particularly interesting film in which to explore such matters because of its ready artifice, strong elements of pastiche and measuredly preposterous excesses. Offering a critical analysis, the paper balances an engagement with some of the systemic elements of the film’s tone with the detailed organisation of tonal elements in particular sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larvae of Galleria mellonella (Greater Wax Moth) have been shown to be susceptible to Campylobacter jejuni infection and our study characterizes this infection model. Following infection with C. jejuni human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut. Bacteria were found in the extracellular and cell-associated fraction in the haemocoel, and it was shown that C. jejuni can survive in insect cells. Finally, we have used the model to screen a further 67 C. jejuni isolates belonging to different MLST types. Isolates belonging to ST257 were the most virulent in the Galleria model, whereas those belonging to ST21 were the least virulent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale co-phylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on average, wasps had sequences from 77% of six genes (5.6kb), figs had sequences from 60% of five genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based co-phylogenetic analyses further support the co-diversification hypothesis. Biogeographic analyses indicate that the presentday distribution of fig and pollinator lineages is consistent with an Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term co-diversification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Large female insects usually have high potential fecundity. Therefore selection should favour an increase in body size given that these females get opportunities to realize their potential advantage by maturing and laying more eggs. However, ectotherm physiology is strongly temperature-dependent, and activities are carried out sufficiently only within certain temperature ranges. Thus it remains unclear if the fecundity advantage of a large size is fully realized in natural environments, where thermal conditions are limiting. 2. Insect fecundity might be limited by temperature at two levels; first eggs need to mature, and then the female needs time for strategic ovipositing of the egg. Since a female cannot foresee the number of oviposition opportunities that she will encounter on a given day, the optimal rate of egg maturation will be governed by trade-offs associated with egg- and time-limited oviposition. As females of different sizes will have different amounts of body reserves, size-dependent allocation trade-offs between the mother’s condition and her egg production might be expected. 3. In the temperate butterfly Pararge aegeria , the time and temperature dependence of oviposition and egg maturation, and the interrelatedness of these two processes were investigated in a series of laboratory experiments, allowing a decoupling of the time budgets for the respective processes. 4. The results show that realized fecundity of this species can be limited by both the temperature dependence of egg maturation and oviposition under certain thermal regimes. Furthermore, rates of oviposition and egg maturation seemed to have regulatory effects upon each other. Early reproductive output was correlated with short life span, indicating a cost of reproduction. Finally, large females matured more eggs than small females when deprived of oviposition opportunities. Thus, the optimal allocation of resources to egg production seems dependent on female size. 5. This study highlights the complexity of processes underlying rates of egg maturation and oviposition in ectotherms under natural conditions. We further discuss the importance of temperature variation for egg- vs. time-limited fecundity and the consequences for the evolution of female body size in insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant-ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn-dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn-dwelling ant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the importance of a thorough understanding of the effect of synthetic fertiliser on insect population dynamics, existing literature is conflicting and an area of intense debate. Here, a categorical random-effects meta-analysis and a vote count meta-analysis are employed to examine the effects of nitrogen(N), phosphorus (P), potassium (K) and NPK fertiliser on insect population dynamics. In agreement with the general consensus, insects were found to respond positively, overall, to fertilisers. Sucking insects showed a much stronger response to fertilisers than chewing insects. The environment in which a study is conducted can have a marked effect on insect responses to fertiliser, with natural environments showing the potential for buffering effects of nitrogen fertilisers in particular. As well as highlighting the potential shortfall in the amount of research investigating particularly the effects of potassium and phosphorus, this study provides an invaluable flag post in the ongoing research investigating fertiliser effects on ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently there has been considerable concern about declines in bee communities in agricultural and natural habitats. The value of pollination to agriculture, provided primarily by bees, is >$200 billion/year worldwide, and in natural ecosystems it is thought to be even greater. However, no monitoring program exists to accurately detect declines in abundance of insect pollinators; thus, it is difficult to quantify the status of bee communities or estimate the extent of declines. We used data from 11 multiyear studies of bee communities to devise a program to monitor pollinators at regional, national, or international scales. In these studies, 7 different methods for sampling bees were used and bees were sampled on 3 different continents. We estimated that a monitoring program with 200–250 sampling locations each sampled twice over 5 years would provide sufficient power to detect small (2–5%) annual declines in the number of species and in total abundance and would cost U.S.$2,000,000. To detect declines as small as 1% annually over the same period would require >300 sampling locations. Given the role of pollinators in food security and ecosystem function, we recommend establishment of integrated regional and international monitoring programs to detect changes in pollinator communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to evidence of insect pollinator declines, organisations in many sectors, including the food and farming industry, are investing in pollinator conservation. They are keen to ensure that their efforts use the best available science. We convened a group of 32 ‘conservation practitioners’ with an active interest in pollinators and 16 insect pollinator scientists. The conservation practitioners include representatives from UK industry (including retail), environmental non-government organisations and nature conservation agencies. We collaboratively developed a long list of 246 knowledge needs relating to conservation of wild insect pollinators in the UK. We refined and selected the most important knowledge needs, through a three-stage process of voting and scoring, including discussions of each need at a workshop. We present the top 35 knowledge needs as scored by conservation practitioners or scientists. We find general agreement in priorities identified by these two groups. The priority knowledge needs will structure ongoing work to make science accessible to practitioners, and help to guide future science policy and funding. Understanding the economic benefits of crop pollination, basic pollinator ecology and impacts of pesticides on wild pollinators emerge strongly as priorities, as well as a need to monitor floral resources in the landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollinators provide a critical ecosystem service by pollinating many wild flowers and crops. It is therefore essential to be able to effectively survey and monitor pollinator communities across a range of habitats, and in particular, sample the often stratified parts of the habitats where insects are found. To date, a wide array of sampling methods have been used to collect insect pollinators, but no single method has been used effectively to sample across habitat types and throughout the spatial structure of habitats. Here we present a method of ‘aerial pan-trapping’ that allows insect pollinators to be sampled across the vertical strata from the canopy of forests to agro-ecosystems. We surveyed and compared the species richness and abundance of a wide range of insect pollinators in agricultural, secondary regenerating forest and primary forest habitats in Ghana to evaluate the usefulness of this approach. In addition to confirming the efficacy of the method at heights of up to 30 metres and the effects of trap color on catch, we found greatest insect abundance in agricultural land and higher bee abundance and species richness in undisturbed forest compared to secondary forest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil-dwelling insect herbivores are significant pests in many managed ecosystems. Because eggs and larvae are difficult to observe, mathematical models have been developed to predict life-cycle events occurring in the soil. To date, these models have incorporated very little empirical information about how soil and drought conditions interact to shape these processes. This study investigated how soil temperature (10, 15, 20 and 25 °C), water content (0.02 (air dried), 0.10 and 0.25 g g−1) and pH (5, 7 and 9) interactively affected egg hatching and early larval lifespan of the clover root weevil (Sitona lepidus Gyllenhal, Coleoptera: Curculionidae). Eggs developed over 3.5 times faster at 25 °C compared with 10 °C (hatching after 40.1 and 11.5 days, respectively). The effect of drought on S. lepidus eggs was investigated by exposing eggs to drought conditions before wetting the soil (2–12 days later) at four temperatures. No eggs hatched in dry soil, suggesting that S. lepidus eggs require water to remain viable. Eggs hatched significantly sooner in slightly acidic soil (pH 5) compared with soils with higher pH values. There was also a significant interaction between soil temperature, pH and soil water content. Egg viability was significantly reduced by exposure to drought. When exposed to 2–6 days of drought, egg viability was 80–100% at all temperatures but fell to 50% after 12 days exposure at 10 °C and did not hatch at all at 20 °C and above. Drought exposure also increased hatching time of viable eggs. The effects of soil conditions on unfed larvae were less influential, except for soil temperature which significantly reduced larval longevity by 57% when reared at 25 °C compared with 10 °C (4.1 and 9.7 days, respectively). The effects of soil conditions on S. lepidus eggs and larvae are discussed in the context of global climate change and how such empirically based information could be useful for refining existing mathematical models of these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we show that it is critically important to consider all production parameters including quality, varietal differences and management costs when valuing the pollination service of any crop so investment in pollinator management can be proportional to its contribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollination by insects enables the reproduction of flowering plants and is critical to UK agriculture.1 Insect pollinators have declined globally, with implications for food security and wild habitats. This POSTnote summarises the causes for the recent trends, gaps in knowledge and possible strategies for reversing pollinator decline.