980 resultados para approximate dynamic programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Meese-Rogoff forecasting puzzle states that foreign exchange (FX) rates are unpredictable. Since one country’s macroeconomic conditions could affect the price of its national currency, we study the dynamic relations between the FX rates and some macroeconomic accounts. Our research tests whether the predictability of the FX rates could be improved through the advanced econometrics. Improving the predictability of the FX rates has important implications for various groups including investors, business entities and the government. The present thesis examines the dynamic relations between the FX rates, savings and investments for a sample of 25 countries from the Organization for Economic Cooperation and Development. We apply quarterly data of FX rates, macroeconomic indices and accounts including the savings and the investments over three decades. Through preliminary Augmented Dickey-Fuller unit root tests and Johansen cointegration tests, we found that the savings rate and the investment rate are cointegrated with the vector (1,-1). This result is consistent with many previous studies on the savings-investment relations and therefore confirms the validity of the Feldstein-Horioka puzzle. Because of the special cointegrating relation between the savings rate and investment rate, we introduce the savings-investment rate differential (SID). Investigating each country through a vector autoregression (VAR) model, we observe extremely insignificant coefficient estimates of the historical SIDs upon the present FX rates. We also report similar findings through the panel VAR approach. We thus conclude that the historical SIDs are useless in forecasting the FX rate. Nonetheless, the coefficients of the past FX rates upon the current SIDs for both the country-specific and the panel VAR models are statistically significant. Therefore, we conclude that the historical FX rates can conversely predict the SID to some degree. Specifically, depreciation in the domestic currency would cause the increase in the SID.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered gene problems are a very common classification of optimization problems. Because of their popularity countless algorithms have been developed in an attempt to find high quality solutions to the problems. It is also common to see many different types of problems reduced to ordered gene style problems as there are many popular heuristics and metaheuristics for them due to their popularity. Multiple ordered gene problems are studied, namely, the travelling salesman problem, bin packing problem, and graph colouring problem. In addition, two bioinformatics problems not traditionally seen as ordered gene problems are studied: DNA error correction and DNA fragment assembly. These problems are studied with multiple variations and combinations of heuristics and metaheuristics with two distinct types or representations. The majority of the algorithms are built around the Recentering- Restarting Genetic Algorithm. The algorithm variations were successful on all problems studied, and particularly for the two bioinformatics problems. For DNA Error Correction multiple cases were found with 100% of the codes being corrected. The algorithm variations were also able to beat all other state-of-the-art DNA Fragment Assemblers on 13 out of 16 benchmark problem instances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study examined whether overt and relational forms of reactive and proactive aggression were differentially related to adolescents’ temperament and attachment security. Measures of adolescents’ temperament, attachment security, and aggression were completed by 211 adolescents, ages 10–14, and their caregivers. Attachment security was consistently associated with all four dimensions of aggression, whereas proneness to frustration was found to be uniquely associated with reactive-overt aggression. Additionally, it was found that at lower levels of effortful control more secure attachment was related to lower levels of reactive-relational aggression. Results also indicated that, for girls, the relation between attachment and proactive-overt and proactive-relational aggression was only significant when effortful control was low. Conversely, for boys, the relation between attachment and proactive-overt aggression and proactive-relational aggression was significant when effortful control was high. Implications of these findings and limitations to the current study are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interior illumination is a complex problem involving numerous interacting factors. This research applies genetic programming towards problems in illumination design. The Radiance system is used for performing accurate illumination simulations. Radiance accounts for a number of important environmental factors, which we exploit during fitness evaluation. Illumination requirements include local illumination intensity from natural and artificial sources, colour, and uniformity. Evolved solutions incorporate design elements such as artificial lights, room materials, windows, and glass properties. A number of case studies are examined, including many-objective problems involving up to 7 illumination requirements, the design of a decorative wall of lights, and the creation of a stained-glass window for a large public space. Our results show the technical and creative possibilities of applying genetic programming to illumination design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we are going to analyze the dictionary graphs and some other kinds of graphs using the PagerRank algorithm. We calculated the correlation between the degree and PageRank of all nodes for a graph obtained from Merriam-Webster dictionary, a French dictionary and WordNet hypernym and synonym dictionaries. Our conclusion was that PageRank can be a good tool to compare the quality of dictionaries. We studied some artificial social and random graphs. We found that when we omitted some random nodes from each of the graphs, we have not noticed any significant changes in the ranking of the nodes according to their PageRank. We also discovered that some social graphs selected for our study were less resistant to the changes of PageRank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of mutation in genes, which is a simple change in our DNA, we will have undesirable phenotypes which are known as genetic diseases or disorders. These small changes, which happen frequently, can have extreme results. Understanding and identifying these changes and associating these mutated genes with genetic diseases can play an important role in our health, by making us able to find better diagnosis and therapeutic strategies for these genetic diseases. As a result of years of experiments, there is a vast amount of data regarding human genome and different genetic diseases that they still need to be processed properly to extract useful information. This work is an effort to analyze some useful datasets and to apply different techniques to associate genes with genetic diseases. Two genetic diseases were studied here: Parkinson’s disease and breast cancer. Using genetic programming, we analyzed the complex network around known disease genes of the aforementioned diseases, and based on that we generated a ranking for genes, based on their relevance to these diseases. In order to generate these rankings, centrality measures of all nodes in the complex network surrounding the known disease genes of the given genetic disease were calculated. Using genetic programming, all the nodes were assigned scores based on the similarity of their centrality measures to those of the known disease genes. Obtained results showed that this method is successful at finding these patterns in centrality measures and the highly ranked genes are worthy as good candidate disease genes for being studied. Using standard benchmark tests, we tested our approach against ENDEAVOUR and CIPHER - two well known disease gene ranking frameworks - and we obtained comparable results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate cost of completing the railway from Port Dalhousie to St. Catharines and an estimate of the cost of the piers at Port Dalhousie signed by William Hamilton Merritt (5 pages, handwritten), July 8, 1854.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate estimate of the cost of completing the Port Dalhousie Railway to the Grand Central Railway Station at Lock 12. This document is badly torn and burned but most of the text is legible, July 14, 1854.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate estimate of the cost of constructing and completing the Port Dalhousie and Thorold Railway to St. Catharines signed by S.D. Woodruff (2 pages, handwritten), Jan. 8, 1855.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate estimate of the cost of extending the Port Dalhousie and Thorold Railway from Geneva Street to the Great Western Railway Station at Lock no. 12 (2 copies) [one appears to be a rough copy] (2 pages, handwritten), Feb. 2, 1855.