952 resultados para angular correlation coefficient


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the effects of patient variables (physical and cognitive disability, significant others' preference and social support) on nurses' nursing home placement decision-making and explored nurses' participation in the decision-making process.^ The study was conducted in a hospital in Texas. A sample of registered nurses on units that refer patients for nursing home placement were asked to review a series of vignettes describing elderly patients that differed in terms of the study variables and indicate the extent to which they agreed with nursing home placement on a five-point Likert scale. The vignettes were judged to have good content validity by a group of five colleagues (expert consultants) and test-retest reliability based on the Pearson correlation coefficient was satisfactory (average of.75) across all vignettes.^ The study tested the following hypotheses: Nurses have more of a propensity to recommend placement when (1) patients have severe physical disabilities; (2) patients have severe cognitive disabilities; (3) it is the significant others' preference; and (4) patients have no social support nor alternative services. Other hypotheses were that (5) a nurse's characteristics and extent of participation will not have a significant effect on their placement decision; and (6) a patient's social support is the most important, single factor, and the combination of factors of severe physical and cognitive disability, significant others' preference, and no social support nor alternative services will be the most important set of predictors of a nurse's placement decision.^ Analysis of Variance (ANOVA) was used to analyze the relationships implied in the hypothesis. A series of one-way ANOVA (bivariate analyses) of the main effects supported hypotheses one-five.^ Overall, the n-way ANOVA (multivariate analyses) of the main effects confirmed that social support was the most important single factor controlling for other variables. The 4-way interaction model confirmed that the most predictive combination of patient characteristics were severe physical and cognitive disability, no social support and the significant others did not desire placement. These analyses provided an understanding of the importance of the influence of specific patient variables on nurses' recommendations regarding placement. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The clinical demand for a device to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is increasing. Based on the so-called Pulse Wave Velocity (PWV) principle, this paper introduces and evaluates a novel concept of BP monitor that can be fully integrated within a chest sensor. After a preliminary calibration, the sensor provides non-occlusive beat-by-beat estimations of Mean Arterial Pressure (MAP) by measuring the Pulse Transit Time (PTT) of arterial pressure pulses travelling from the ascending aorta towards the subcutaneous vasculature of the chest. In a cohort of 15 healthy male subjects, a total of 462 simultaneous readings consisting of reference MAP and chest PTT were acquired. Each subject was recorded at three different days: D, D+3 and D+14. Overall, the implemented protocol induced MAP values to range from 80 ± 6 mmHg in baseline, to 107 ± 9 mmHg during isometric handgrip maneuvers. Agreement between reference and chest-sensor MAP values was tested by using intraclass correlation coefficient (ICC = 0.78) and Bland-Altman analysis (mean error = 0.7 mmHg, standard deviation = 5.1 mmHg). The cumulative percentage of MAP values provided by the chest sensor falling within a range of ±5 mmHg compared to reference MAP readings was of 70%, within ±10 mmHg was of 91%, and within ±15mmHg was of 98%. These results point at the fact that the chest sensor complies with the British Hypertension Society (BHS) requirements of Grade A BP monitors, when applied to MAP readings. Grade A performance was maintained even two weeks after having performed the initial subject-dependent calibration. In conclusion, this paper introduces a sensor and a calibration strategy to perform MAP measurements at the chest. The encouraging performance of the presented technique paves the way towards an ambulatory-compliant, continuous and non-occlusive BP monitoring system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction The aim of this study was to determine which single measurement on post-mortem cardiac MR reflects actual heart weight as measured at autopsy, assess the intra- and inter-observer reliability of MR measurements, derive a formula to predict heart weight from MR measurements and test the accuracy of the formula to prospectively predict heart weight. Materials and methods 53 human cadavers underwent post-mortem cardiac MR and forensic autopsy. In Phase 1, left ventricular area and wall thickness were measured on short axis and four chamber view images of 29 cases. All measurements were correlated to heart weight at autopsy using linear regression analysis. In Phase 2, single left ventricular area measurements on four chamber view images (LVA_4C) from 24 cases were used to predict heart weight at autopsy based on equations derived during Phase 1. Intra-class correlation coefficient (ICC) was used to determine inter- and intra-reader agreement. Results Heart weight strongly correlates with LVA_4C (r=0.78 M; p<0.001). Intra-reader and inter-reader reliability was excellent for LVA_4C (ICC=0.81–0.91; p<0.001 and ICC=0.90; p<0.001 respectively). A simplified formula for heart weight ([g]≈LVA_4C [mm2]×0.11) was derived based on linear regression analysis. Conclusions This study shows that single circumferential area measurements of the left ventricle in the four chamber view on post-mortem cardiac MR reflect actual heart weight as measured at autopsy. These measurements yield an excellent intra- and inter-reader reliability and can be used to predict heart weight prior to autopsy or to give a reasonable estimate of heart weight in cases where autopsy is not performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction The purpose of this paper is to present the technical specifications of the Forensic Reference Phantom (FRP), to test its behavior relative to organic test materials, and discuss potential applications of the phantom in forensic radiology. Materials and method The FRP prototype is made of synthetic materials designed to simulate the computed tomography (CT) attenuation of water. It has six bore holes that accommodate multiuse containers. These containers were filled with test materials and scanned at 80 kVp, 120 kVp, and 140 kVp. X-ray attenuation was measured by two readers. Intra- and inter-reader reliability was assessed using the intra-class correlation coefficient (ICC). Significance levels between mean CT numbers at 80 kVp, 120 kVp, and 140 kVp were assessed with the Friedman-test. The T-test was used to assess significance levels between the FRP and water. Results Overall mean CT numbers ranged from −3.0–3.7HU for the FRP; −1000.3–−993.5HU for air; −157.7– −108.1HU for oil; 35.5–42.0HU for musle tissue; and 1301.5–2354.8HU for cortical bone. Inter-reader and intra-reader reliability were excellent (ICC>0.994; and ICC=0.999 respectively). CT numbers were significantly different at different energy levels. There was no significant difference between the attenuation of the FRP and water. Conclusions The FRP is a new tool for quality assurance and research in forensic radiology. The mean CT attenuation of the FRP is equivalent to water. The phantom can be scanned during routine post-mortem CT to assess the composition of unidentified objects. In addition, the FRP may be used to investigate new imaging algorithms and scan protocols in forensic radiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION The aim of this study was to determine the reproducibility and accuracy of linear measurements on 2 types of dental models derived from cone-beam computed tomography (CBCT) scans: CBCT images, and Anatomodels (InVivoDental, San Jose, Calif); these were compared with digital models generated from dental impressions (Digimodels; Orthoproof, Nieuwegein, The Netherlands). The Digimodels were used as the reference standard. METHODS The 3 types of digital models were made from 10 subjects. Four examiners repeated 37 linear tooth and arch measurements 10 times. Paired t tests and the intraclass correlation coefficient were performed to determine the reproducibility and accuracy of the measurements. RESULTS The CBCT images showed significantly smaller intraclass correlation coefficient values and larger duplicate measurement errors compared with the corresponding values for Digimodels and Anatomodels. The average difference between measurements on CBCT images and Digimodels ranged from -0.4 to 1.65 mm, with limits of agreement values up to 1.3 mm for crown-width measurements. The average difference between Anatomodels and Digimodels ranged from -0.42 to 0.84 mm with limits of agreement values up to 1.65 mm. CONCLUSIONS Statistically significant differences between measurements on Digimodels and Anatomodels, and between Digimodels and CBCT images, were found. Although the mean differences might be clinically acceptable, the random errors were relatively large compared with corresponding measurements reported in the literature for both Anatomodels and CBCT images, and might be clinically important. Therefore, with the CBCT settings used in this study, measurements made directly on CBCT images and Anatomodels are not as accurate as measurements on Digimodels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE Currently, the diagnosis of pedicle screw (PS) loosening is based on a subjectively assessed halo sign, that is, a radiolucent line around the implant wider than 1 mm in plain radiographs. We aimed at development and validation of a quantitative method to diagnose PS loosening on radiographs. METHODS Between 11/2004 and 1/2010 36 consecutive patients treated with thoraco-lumbar spine fusion with PS instrumentation without PS loosening were compared with 37 other patients who developed a clinically manifesting PS loosening. Three different angles were measured and compared regarding their capability to discriminate the loosened PS over the postoperative course. The inter-observer invariance was tested and a receiver operating characteristics curve analysis was performed. RESULTS The angle measured between the PS axis and the cranial endplate was significantly different between the early and all later postoperative images. The Spearman correlation coefficient for the measurements of two observers at each postoperative time point ranged between 0.89 at 2 weeks to 0.94 at 2 months and 1 year postoperative. The angle change of 1.9° between immediate postoperative and 6-month postoperative was 75% sensitive and 89% specific for the identification of loosened screws (AUC = 0.82). DISCUSSION The angle between the PS axis and the cranial endplate showed good ability to change in PS loosening. A change of this angle of at least 2° had a relatively high sensitivity and specificity to diagnose screw loosening.