955 resultados para ambient water temperatures
Resumo:
Ice-rich permafrost landscapes are sensitive to climate and environmental change due to the melt-out of ground ice during thermokarst development. Thermokarst processes in the northern Yukon Territory are currently not well-documented. Lake sediments from Herschel Island (69°36'N; 139°04'W) in the western Canadian Arctic provide a record of thermokarst lake development since the early Holocene. A 727 cm long lake sediment core was analyzed for radiographic images, magnetic susceptibility, granulometry, and biogeochemical parameters (organic carbon, nitrogen, and stable carbon isotopes). Based on eight calibrated AMS radiocarbon dates, the sediment record covers the last ~ 11,500 years and was divided into four lithostratigraphic units (A to D) reflecting different thermokarst stages. Thermokarst initiation at the study area began ~ 11.5 cal ka BP. From ~ 11.5 to 10.0 cal ka BP, lake sediments of unit A started to accumulate in an initial lake basin created by melt-out of massive ground ice and thaw subsidence. Between 10.0 and 7.0 cal ka BP (unit B) the lake basin expanded in size and depth, attributed to talik formation during the Holocene thermal maximum. Higher-than-modern summer air temperatures led to increased lake productivity and widespread terrain disturbances in the lake's catchment. Thermokarst lake development between 7.0 and 1.8 cal ka BP (unit C) was characterized by a dynamic equilibrium, where lake basin and talik steadily expanded into ambient ice-rich terrain through shoreline erosion. Once lakes become deeper than the maximum winter lake ice thickness, thermokarst lake sediments show a great preservation potential. However, site-specific geomorphic factors such as episodic bank-shore erosion or sudden drainage through thermo-erosional valleys or coastal erosion breaching lake basins can disrupt continuous deposition. A hiatus in the record from 1.8 to 0.9 cal ka BP in Lake Herschel likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines before continuous sedimentation of unit D recommenced during the last 900 years.
Resumo:
We deployed autonomous temperature sensors at black smoker chimneys, cracks, and diffuse flow areas at the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17'N) between summer 2009 and summer 2012 and contemporaneously measured tidal pressures and currents as part of the long-term MoMAR experiment to monitor hydrothermal activity. We classify the temperature data according to the hydrogeologic setting of the measurement sites: a high-temperature regime (>190°C) representing discharge of essentially unmixed, primary hydrothermal fluids through chimneys, an intermediate-temperature regime (10-100°C) associated with mixing of primary fluids with cold pore fluids discharging through cracks, and a low-temperature regime (<10°C) associated with a thermal boundary layer forming over bacterial mats associated with diffuse outflow of warm fluids. Temperature records from all the regimes exhibit variations at semi-diurnal tidal periods, and cross-spectral analyses reveal that high-temperature discharge correlates to tidal pressure while low-temperature discharge correlates to tidal currents. Intermediate-temperature discharge exhibits a transitional behavior correlating to both tidal pressure and currents. Episodic perturbations, with transient temperature drops of up to ~150°C, which occur in the high-temperature and intermediate-temperature records, are not observed on multiple probes (including nearby probes at the same site), and they are not correlated with microearthquake activity, indicating that the perturbation mechanism is highly localized at the measurement sites within the hydrothermal structures. The average temperature at a given site may increase or decrease at annual time scales, but the average temperature of the hydrothermal field, as a whole, appears to be stable over our 3 year observation period.
Resumo:
Sites 677 and 678 were drilled on ODP Leg 111 to test hypotheses about the nature and pattern of hydrothermal circulation on a mid-ocean ridge flank. Together with earlier results from DSDP Site 501/504 and several heatflow and piston coring surveys covering a 100-km**2 area surrounding the three drill sites, they confirm that hydrothermal circulation persists in this 5.9-m.y.-old crust, both in basement and through the overlying sediments (Langseth et al., 1988, doi:10.2973/odp.proc.ir.111.102.1988). Profiles of sediment pore-water composition with depth at the three drill sites show both vertical and horizontal gradients. The shapes of the profiles and their variation from one site to another result from a combination of vertical and horizontal diffusion, convection, and reaction in the sediments and basement. Chemical species that are highly reactive in the siliceous-calcareous biogenic sediments include bicarbonate (alkalinity), ammonium, sulfate, manganese, calcium, strontium, lithium, silica, and possibly potassium. Reactions include bacterial sulfate reduction, mobilization of Mn2+, precipitation of CaCO3, and recrystallization of calcareous and siliceous oozes to chalk, limestone, and chert. Species with profiles more affected by reaction in basaltic basement than in the sediments include Mg, Ca, Na, K, and oxygen isotopes. Reaction in basement at 60?C and at higher temperatures has produced a highly altered basement formation water that is uniform in composition over distances of several kilometers. As inferred from the composition of the basal sediment pore water at the three sites, this uniformity extends from up flow zone to downflow zone in basement and the sediments. It exists in spite of large variations in heat flow and depth to basement, apparently as a result of homogenization by hydrothermal circulation in basement. Profiles for chlorinity, Na, Mg, and other species in the sediment pore waters confirm that Site 678, drilled on a localized heatflow high identified by Langseth et al. (1988), is a site of long-lived upwelling of warm water from basement through the sediments at velocities of 1 to 2 mm/yr. The upflow through the anomalously thin sediments is apparently localized above an uplifted fault block in basement. This site and other similar sites in the survey area give rise to lateral diffusion and possibly flow through the sediments, which produces lateral gradients in sediment pore-water composition at sites such as 501/504. The complementary pore-water profiles at the low-heatflow Site 677 2 km to the south indicate that downflow is occurring through the sediments there, at comparable rates of 1 to 2 mm/yr.
Resumo:
There is limited knowledge pertaining to the history of the Greenland Ice Sheet (GIS) during the last glacial-interglacial transition as it retreated from the continental margins to an inland position. Here we use multiproxy data, including ice-rafted debris (IRD); planktonic isotopes; alkenone temperatures; and tephra geochemistry from the northern Labrador Sea, off southwest Greenland, to investigate the deglacial response of the GIS and evaluate its implications for the North Atlantic deglacial development. The results imply that the southern GIS retreated in three successive stages: (1) early deglaciation of the East Greenland margins, by tephra-rich IRD that embrace Heinrich Event 1; (2) progressive retreat during Allerød culminating in major meltwater releases (d18O depletion of 1.2 per mil) at the Allerød-Younger Dryas transition (12.8-13.0 kyr B.P.); and (3) a final stage of glacial recession during the early Holocene (~9-11 kyr B.P.). Rather than indicating local temperatures of ambient surface water, the alkenones likely were transported to the core site by the Irminger Current. We attribute the timing of GIS retreat to the incursion of warm intermediate waters along the base of grounded glaciers and below floating ice shelves on the continental margin. The results lend support to the view that GIS meltwater presented a forcing factor for the Younger Dryas cooling.