979 resultados para adaptive capacity
Resumo:
Adaptive governance is the use of novel approaches within policy to support experimentation and learning. Social learning reflects the engagement of interdependent stakeholders within this learning. Much attention has focused on these concepts as a solution for resilience in governing institutions in an uncertain climate; resilience representing the ability of a system to absorb shock and to retain its function and form through reorganisation. However, there are still many questions to how these concepts enable resilience, particularly in vulnerable, developing contexts. A case study from Uganda presents how these concepts promote resilient livelihood outcomes among rural subsistence farmers within a decentralised governing framework. This approach has the potential to highlight the dynamics and characteristics of a governance system which may manage change. The paper draws from the enabling characteristics of adaptive governance, including lower scale dynamics of bonding and bridging ties and strong leadership. Central to these processes were learning platforms promoting knowledge transfer leading to improved self-efficacy, innovation and livelihood skills. However even though aspects of adaptive governance were identified as contributing to resilience in livelihoods, some barriers were identified. Reflexivity and multi-stakeholder collaboration were evident in governing institutions; however, limited self-organisation and vertical communication demonstrated few opportunities for shifts in governance, which was severely challenged by inequity, politicisation and elite capture. The paper concludes by outlining implications for climate adaptation policy through promoting the importance of mainstreaming adaptation alongside existing policy trajectories; highlighting the significance of collaborative spaces for stakeholders and the tackling of inequality and corruption.
Resumo:
This study examines when “incremental” change is likely to trigger “discontinuous” change, using the lens of complex adaptive systems theory. Going beyond the simulations and case studies through which complex adaptive systems have been approached so far, we study the relationship between incremental organizational reconfigurations and discontinuous organizational restructurings using a large-scale database of U.S. Fortune 50 industrial corporations. We develop two types of escalation process in organizations: accumulation and perturbation. Under ordinary conditions, it is perturbation rather than the accumulation that is more likely to trigger subsequent discontinuous change. Consistent with complex adaptive systems theory, organizations are more sensitive to both accumulation and perturbation in conditions of heightened disequilibrium. Contrary to expectations, highly interconnected organizations are not more liable to discontinuous change. We conclude with implications for further research, especially the need to attend to the potential role of managerial design and coping when transferring complex adaptive systems theory from natural systems to organizational systems.
Resumo:
Background Despite the promising benefits of adaptive designs (ADs), their routine use, especially in confirmatory trials, is lagging behind the prominence given to them in the statistical literature. Much of the previous research to understand barriers and potential facilitators to the use of ADs has been driven from a pharmaceutical drug development perspective, with little focus on trials in the public sector. In this paper, we explore key stakeholders’ experiences, perceptions and views on barriers and facilitators to the use of ADs in publicly funded confirmatory trials. Methods Semi-structured, in-depth interviews of key stakeholders in clinical trials research (CTU directors, funding board and panel members, statisticians, regulators, chief investigators, data monitoring committee members and health economists) were conducted through telephone or face-to-face sessions, predominantly in the UK. We purposively selected participants sequentially to optimise maximum variation in views and experiences. We employed the framework approach to analyse the qualitative data. Results We interviewed 27 participants. We found some of the perceived barriers to be: lack of knowledge and experience coupled with paucity of case studies, lack of applied training, degree of reluctance to use ADs, lack of bridge funding and time to support design work, lack of statistical expertise, some anxiety about the impact of early trial stopping on researchers’ employment contracts, lack of understanding of acceptable scope of ADs and when ADs are appropriate, and statistical and practical complexities. Reluctance to use ADs seemed to be influenced by: therapeutic area, unfamiliarity, concerns about their robustness in decision-making and acceptability of findings to change practice, perceived complexities and proposed type of AD, among others. Conclusions There are still considerable multifaceted, individual and organisational obstacles to be addressed to improve uptake, and successful implementation of ADs when appropriate. Nevertheless, inferred positive change in attitudes and receptiveness towards the appropriate use of ADs by public funders are supportive and are a stepping stone for the future utilisation of ADs by researchers.
Resumo:
This paper empirically tests the effectiveness of information and communications technology (ICT) knowledge transfer and adoption in the multinational enterprise (MNE) as an issue of critical importance to contemporary MNE functioning. In contrast to mainstream thinking on absorptive capacity, but in line with prevailing international business theory, our research supports the proposition that perceptions of procedural justice, rather than absorptive capacity, determine effectiveness, especially in cases of high tacit knowledge transfers. Data was collected from senior ICT representatives in 86 Canadian subsidiaries of foreign owned MNEs. Each of these subsidiaries recently experienced a significant ICT transfer imposed by the parent organization. Support was found for the main propositions: Procedural justice significantly predicted successful ICT transfer and adoption, while absorptive capacity was not significant. These findings are consistent even when knowledge tacitness was high. The perceived success of the ICT transfer as well as its adoption varied widely across these firms. The potential reasons for this divergence in effectiveness are manifold, but our findings suggest that in situations of substantial knowledge tacitness, a higher level of procedural justice, rather than a higher level of absorptive capacity, is critical to effective transfer and adoption.
Resumo:
An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.
Resumo:
Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.
Resumo:
Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn/ mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn/ mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn/ mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn/ mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.
Resumo:
Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground ‘tree talk’ is a foundational process in the complex adaptive nature of forest ecosystems.
Resumo:
Background Appropriately conducted adaptive designs (ADs) offer many potential advantages over conventional trials. They make better use of accruing data, potentially saving time, trial participants, and limited resources compared to conventional, fixed sample size designs. However, one can argue that ADs are not implemented as often as they should be, particularly in publicly funded confirmatory trials. This study explored barriers, concerns, and potential facilitators to the appropriate use of ADs in confirmatory trials among key stakeholders. Methods We conducted three cross-sectional, online parallel surveys between November 2014 and January 2015. The surveys were based upon findings drawn from in-depth interviews of key research stakeholders, predominantly in the UK, and targeted Clinical Trials Units (CTUs), public funders, and private sector organisations. Response rates were as follows: 30(55 %) UK CTUs, 17(68 %) private sector, and 86(41 %) public funders. A Rating Scale Model was used to rank barriers and concerns in order of perceived importance for prioritisation. Results Top-ranked barriers included the lack of bridge funding accessible to UK CTUs to support the design of ADs, limited practical implementation knowledge, preference for traditional mainstream designs, difficulties in marketing ADs to key stakeholders, time constraints to support ADs relative to competing priorities, lack of applied training, and insufficient access to case studies of undertaken ADs to facilitate practical learning and successful implementation. Associated practical complexities and inadequate data management infrastructure to support ADs were reported as more pronounced in the private sector. For funders of public research, the inadequate description of the rationale, scope, and decision-making criteria to guide the planned AD in grant proposals by researchers were all viewed as major obstacles. Conclusions There are still persistent and important perceptions of individual and organisational obstacles hampering the use of ADs in confirmatory trials research. Stakeholder perceptions about barriers are largely consistent across sectors, with a few exceptions that reflect differences in organisations’ funding structures, experiences and characterisation of study interventions. Most barriers appear connected to a lack of practical implementation knowledge and applied training, and limited access to case studies to facilitate practical learning. Keywords: Adaptive designs; flexible designs; barriers; surveys; confirmatory trials; Phase 3; clinical trials; early stopping; interim analyses
Resumo:
The failing heart is characterized by complex tissue remodelling involving increased cardiomyocyte death, and impairment of sarcomere function, metabolic activity, endothelial and vascular function, together with increased inflammation and interstitial fibrosis. For years, therapeutic approaches for heart failure (HF) relied on vasodilators and diuretics which relieve cardiac workload and HF symptoms. The introduction in the clinic of drugs interfering with beta-adrenergic and angiotensin signalling have ameliorated survival by interfering with the intimate mechanism of cardiac compensation. Current therapy, though, still has a limited capacity to restore muscle function fully, and the development of novel therapeutic targets is still an important medical need. Recent progress in understanding the molecular basis of myocardial dysfunction in HF is paving the way for development of new treatments capable of restoring muscle function and targeting specific pathological subsets of LV dysfunction. These include potentiating cardiomyocyte contractility, increasing cardiomyocyte survival and adaptive hypertrophy, increasing oxygen and nutrition supply by sustaining vessel formation, and reducing ventricular stiffness by favourable extracellular matrix remodelling. Here, we consider drugs such as omecamtiv mecarbil, nitroxyl donors, cyclosporin A, SERCA2a (sarcoplasmic/endoplasmic Ca(2 +) ATPase 2a), neuregulin, and bromocriptine, all of which are currently in clinical trials as potential HF therapies, and discuss novel molecular targets with potential therapeutic impact that are in the pre-clinical phases of investigation. Finally, we consider conceptual changes in basic science approaches to improve their translation into successful clinical applications.
Resumo:
This paper aims to critically examine the application of Predicted Mean Vote (PMV) in an air-conditioned environment in the hot-humid climate region. Experimental studies have been conducted in a climate chamber in Chongqing, China, from 2008 to 2010. A total of 440 thermal responses from participants were obtained. Data analysis reveals that the PMV overestimates occupants' mean thermal sensation in the warm environment (PMV > 0) with a mean bias of 0.296 in accordance with the ASHRAE thermal sensation scales. The Bland–Altman method has been applied to assess the agreement of the PMV and Actual Mean Vote (AMV) and reveals a lack of agreement between them. It is identified that habituation due to the past thermal experience of a long-term living in a specific region could stimulate psychological adaptation. The psychological adaptation can neutralize occupants’ actual thermal sensation by moderating the thermal sensibility of the skin. A thermal sensation empirical model and a PMV-revised index are introduced for air-conditioned indoor environments in hot-humid regions. As a result of habituation, the upper limit effective thermal comfort temperature SET* can be increased by 1.6 °C in a warm season based on the existing international standard. As a result, a great potential for energy saving from the air-conditioning system in summer could be achieved.
Resumo:
The notion that large body size confers some intrinsic advantage to biological species has been debated for centuries. Using a phylogenetic statistical approach that allows the rate of body size evolution to vary across a phylogeny, we find a long-term directional bias toward increasing size in the mammals. This pattern holds separately in 10 of 11 orders for which sufficient data are available and arises from a tendency for accelerated rates of evolution to produce increases, but not decreases, in size. On a branch-by-branch basis, increases in body size have been more than twice as likely as decreases, yielding what amounts to millions and millions of years of rapid and repeated increases in size away from the small ancestral mammal. These results are the first evidence, to our knowledge, from extant species that are compatible with Cope’s rule: the pattern of body size increase through time observed in the mammalian fossil record. We show that this pattern is unlikely to be explained by several nonadaptive mechanisms for increasing size and most likely represents repeated responses to new selective circumstances. By demonstrating that it is possible to uncover ancient evolutionary trends from a combination of a phylogeny and appropriate statistical models, we illustrate how data from extant species can complement paleontological accounts of evolutionary history, opening up new avenues of investigation for both.
Resumo:
Climate change poses new challenges to cities and new flexible forms of governance are required that are able to take into account the uncertainty and abruptness of changes. The purpose of this paper is to discuss adaptive climate change governance for urban resilience. This paper identifies and reviews three traditions of literature on the idea of transitions and transformations, and assesses to what extent the transitions encompass elements of adaptive governance. This paper uses the open source Urban Transitions Project database to assess how urban experiments take into account principles of adaptive governance. The results show that: the experiments give no explicit information of ecological knowledge; the leadership of cities is primarily from local authorities; and evidence of partnerships and anticipatory or planned adaptation is limited or absent. The analysis shows that neither technological, political nor ecological solutions alone are sufficient to further our understanding of the analytical aspects of transition thinking in urban climate governance. In conclusion, the paper argues that the future research agenda for urban climate governance needs to explore further the links between the three traditions in order to better identify contradictions, complementarities or compatibilities, and what this means in practice for creating and assessing urban experiments.
Resumo:
This paper describes a novel on-line learning approach for radial basis function (RBF) neural network. Based on an RBF network with individually tunable nodes and a fixed small model size, the weight vector is adjusted using the multi-innovation recursive least square algorithm on-line. When the residual error of the RBF network becomes large despite of the weight adaptation, an insignificant node with little contribution to the overall system is replaced by a new node. Structural parameters of the new node are optimized by proposed fast algorithms in order to significantly improve the modeling performance. The proposed scheme describes a novel, flexible, and fast way for on-line system identification problems. Simulation results show that the proposed approach can significantly outperform existing ones for nonstationary systems in particular.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.