972 resultados para actin-host- interactions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain saccharides, including trehalose, sucrose and glucose, stabilize lipid bilayers against dehydration. It has been suggested that these saccharides replace waters of hydration as the system is dried, thereby maintaining the headgroups at their hydrated spacing. The lipid acyl chains consequently have sufficient free volume to remain in the liquid crystallines state, and the processes that disrupt membrane integrity are inhibited. Initial molecular graphic investigations of a model trehalose/DMPC system supported this idea (Chandrasekhar, I. and Gaber, B.P. (1988) J. Biomol. Stereodyn, 5, 1163–1171). We have extended these studies to glucose and sucrose. A set of AMBER potential parameters has been established that reproduce simple saccharide conformations, including the anomeric effect. Extensive energy minimizations have been conducted on all three systems. The saccharide-lipid interaction energies become less stable in the order trehalose

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Torsional interactions can occur due to the speed input Power System Stabilizer (PSS) that are primarily used to damp low frequency oscillations. The solution to this problem can be either in the form of providing a torsional filter or developing an alternate signal for the PSS. This paper deals with the formulation of a linearized state space model of the system and study of the interactions using eigenvalue analysis. The effects of the parameters of PSS and control signals on the damping of torsional modes are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental charge density distribution in three compounds, 2-chloro-3-quinolinyl methanol, 2-chloro-3-hydroxypyridine, and 2-chloro-3-chloromethyl-8-methylquinoline, has been obtained using high-resolution X-ray diffraction data collected at 100 K based on the aspherical multipole modeling of electron density. These compounds represent type I (cis), type I (trans), and type II geometries, respectively, as defined for short Cl center dot center dot center dot Cl interactions. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from a periodic quantum calculation at the B3LYP/6-31G** level. The topological features derived from the Bader's theory of atoms in molecules (AIM) approach unequivocally suggest that both cis and trans type I geometries show decreased repulsion, whereas type II geometry is attractive based on the nature of polar flattening of the electron density around the Cl atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various factore controlling the preferred facial selectivity in the reductions of a number of sterically unbiased ketones have been evaluated using a semiempirical MO procedure. MNDO optimized geometries do not reveal any significant ground-state distortions which can be correlated with the observed face selectivities. Electrostatic effecta due to an approaching reagent were modeled by placing a test negative charge at a fixed distance from the carbonyl carbon on each of the two faces. A second series of calculations was carried out using the hydride ion as a test nucleophile. The latter calculations effectively include orbital interactions involving the u and u* orbitals of the newly formed bond in the reaction. The computed energy differences with the charge model are generally much larger compared to those with the hydride ion. However, both models lead to predictions which are qualitatively consistent with the experimentally determined facial preferences for most of the systems. Thus, electrostatic interactions between the nucleophile and the substrate seem to effectively determine the face selectivities in these molecules. However, there are a few exceptions in which orbital interactions are found to contribute significantly and occasionally reverse the preference dictated by electrostatic effecta. The remarkable succew of the hydride model calculations, in spite of retaining the unperturbed geometries of the substrates, points to the unimportance of torsional effeds and orbital distortions associated with the pyramidalized carbonyl unit in the transition state in most of the substrates considered. Additional experimental results are reported which provide useful calibration for the present computational approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modes of binding of Gp(2',5')A, Gp(2',5')C, Gp(2',5')G and Gp(2',5')U to RNase T1 have been determined by computer modelling studies. All these dinucleoside phosphates assume extended conformations in the active site leading to better interactions with the enzyme. The 5'-terminal guanine of all these ligands is placed in the primary base binding site of the enzyme in an orientation similar to that of 2'-GMP in the RNase T1-2'-GMP complex. The 2'-terminal purines are placed close to the hydrophobic pocket formed by the residues Gly71, Ser72, Pro73 and Gly74 which occur in a loop region. However, the orientation of the 2'-terminal pyrimidines is different from that of 2'-terminal purines. This perhaps explains the higher binding affinity of the 2',5'-linked guanine dinucleoside phosphates with 2'-terminal purines than those with 2'-terminal pyrimidines. A comparison of the binding of the guanine dinucleoside phosphates with 2',5'- and 3',5'-linkages suggests significant differences in the ribose pucker and hydrogen bonding interactions between the catalytic residues and the bound nucleoside phosphate implying that 2',5'-linked dinucleoside phosphates may not be the ideal ligands to probe the role of the catalytic amino acid residues. A change in the amino acid sequence in the surface loop region formed by the residues Gly71 to Gly74 drastically affects the conformation of the base binding subsite, and this may account for the inactivity of the enzyme with altered sequence i.e., with Pro, Gly and Ser at positions 71 to 73 respectively. These results thus suggest that in addition to recognition and catalytic sites, interactions at the loop regions which constitute the subsite for base binding are also crucial in determining the substrate specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic periodontitis results from a complex aetiology, including the formation of a subgingival biofilm and the elicitation of the host s immune and inflammatory response. The hallmark of chronic periodontitis is alveolar bone loss and soft periodontal tissue destruction. Evidence supports that periodontitis progresses in dynamic states of exacerbation and remission or quiescence. The major clinical approach to identify disease progression is the tolerance method, based on sequential probing. Collagen degradation is one of the key events in periodontal destructive lesions. Matrix metalloproteinase (MMP)-8 and MMP-13 are the primary collagenolytic MMPs that are associated with the severity of periodontal inflammation and disease, either by a direct breakdown of the collagenised matrix or by the processing of non-matrix bioactive substrates. Despite the numerous host mediators that have been proposed as potential biomarkers for chronic periodontitis, they reflect inflammation rather than the loss of periodontal attachment. The aim of the present study was to determine the key molecular MMP-8 and -13 interactions in gingival crevicular fluid (GCF) and gingival tissue from progressive periodontitis lesions and MMP-8 null allele mouse model. In study (I), GCF and gingival biopsies from active and inactive sites of chronic periodontitis patients, which were determined clinically by the tolerance method, and healthy GCF were analysed for MMP-13 and tissue inhibitor of matrix metalloproteinases (TIMP)-1. Chronic periodontitis was characterised by increased MMP-13 levels and the active sites showed a tendency of decreased TIMP-1 levels associated with increments of MMP-13 and total protein concentration compared to inactive sites. In study (II), we investigated whether MMP-13 activity was associated with TIMP-1, bone collagen breakdown through ICTP levels, as well as the activation rate of MMP-9 in destructive lesions. The active sites demonstrated increased GCF ICTP levels as well as lowered TIMP-1 detection along with elevated MMP-13 activity. MMP-9 activation rate was enhanced by MMP-13 in diseased gingival tissue. In study (III), we analysed the potential association between the levels, molecular forms, isoenzyme distribution and degree of activation of MMP-8, MMP-14, MPO and the inhibitor TIMP-1 in GCF from periodontitis progressive patients at baseline and after periodontal therapy. A positive correlation was found for MPO/MMP-8 and their levels associated with progression episodes and treatment response. Because MMP-8 is activated by hypochlorous acid in vitro, our results suggested an interaction between the MPO oxidative pathway and MMP-8 activation in GCF. Finally, in study (IV), on the basis of the previous finding that MMP-8-deficient mice showed impaired neutrophil responses and severe alveolar bone loss, we aimed to characterise the detection patterns of LIX/CXCL5, SDF-1/CXCL12 and RANKL in P. gingivalis-induced experimental periodontitis and in the MMP-8-/- murine model. The detection of neutrophil-chemoattractant LIX/CXCL5 was restricted to the oral-periodontal interface and its levels were reduced in infected MMP-8 null mice vs. wild type mice, whereas the detection of SDF-1/CXCL12 and RANKL in periodontal tissues increased in experimentally-induced periodontitis, irrespectively from the genotype. Accordingly, MMP-8 might regulate LIX/CXCL5 levels by undetermined mechanisms, and SDF-1/CXCL12 and RANKL might promote the development and/or progression of periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations on Xe in NaY and Ar in NaCaA zeolite are reported. Rates of cage-to-cage crossovers in the two zeolites exhibit trends which are contrary to that expected from geometrical considerations. The results suggest the important role of the sorbate-zeolite interactions in determining the molecular sieve properties of zeolites for small sized sorbates. The results are explained in terms of the barrier height for cage-to-cage crossover in the two zeolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) studies of poly2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with varying conjugation, and polyethylene dioxythiophene complexed with polystyrene sulfonate (PEDOT-PSS) in different solvents have shown the importance of the role of pi-electron conjugation and solvent-chain interactions in controlling the chain conformation and assembly. In MEH-PPV, by increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in the fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. In the case of PEDOT-PSS, the chains undergo solvent induced expansion and enhanced chain organization. The clusters formed by chains are better correlated in dimethyl sulfoxide (DMSO) solution than water, as observed in the scattered intensity profiles. The values of radius of gyration and the exponent (water: 2.6, DMSO: 2.31) of power-law decay, obtained from the unified scattering function (Beaucage) analysis, give evidence for chain expansion from compact (in water) to an extended coil in DMSO solutions, which is consistent with the Kratky plot analysis. The mechanism of this transition and the increase in dc conductivity of PEDOT-PSS in DMSO solution are discussed. The onset frequency for the increase in ac conduction, as well as its temperature dependence, probes the extent of the connectivity in the PEDOT-PSS system. The enhanced charge transport in PEDOT-PSS in DMSO is attributed to the extended chain conformation, as observed in the SAXS results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of NMR spectroscopy of molecules oriented in liquid-crystalline media to study solvent-solute and solute-solute interactions in π-systems such as benzene-chloroform and in charge transfer complexes, for example pyridineiodine, is illustrated. Changes in molecular order and chemical shifts as a result of complexation are employed in such studies. The extraordinary symmetry of C60 has also been investigated by using a mixture of liquid crystals of opposite diamagnetic anisotropies indicating, thereby, negligible solvent-solute/solute-solute interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We utilize top polarization in the process e(+)e(-) -> t (t) over bar at the International Linear Collider ( ILC) with transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model and to disentangle their individual contributions. Ninety percent confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10(-3) TeV-2 for real and imaginary parts of both scalar and tensor couplings at root s = 500 and 800 GeV with an integrated luminosity of 500 fb(-1) and completely polarized beams are shown to be possible. A powerful model-independent framework for inclusive measurements is employed to describe the spin-momentum correlations, and their C, P, and T properties are presented in a technical appendix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simple template-free method for the synthesis of interconnected hierarchical porous palladium nanostructures by controlling the aggregation of nanoparticles in organic media. The interaction between the nanoparticles is tuned by varying the dielectric constant of the medium consistent with DLVO calculations. The reaction products range from discrete nanoparticles to compact porous clusters with large specific surface areas. The nanoclusters exhibit hierarchical porosity and are found to exhibit excellent activity towards the reduction of 4-nitrophenol into 4-aminophenol and hydrogen oxidation. The method opens up possibilities for synthesizing porous clusters of other functional inorganics in organic media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of cholesterol-based cationic gemini lipids with and without hydroxyl functions at the headgroups possessing different lengths of polymethylene -(CH2)(n)-] (n = 3, 4, 5, 6, 12) spacer have been synthesized. Each gemini lipid formed stable suspension in water. The suspensions of these gemini lipids in water were investigated using transmission electron microscopy, dynamic light scattering, zeta potential measurements and X-ray diffraction to characterize the nature of the individual aggregates formed therein. The aggregation properties of these gemini lipids in water were found to strongly depend upon the length of the spacer and the presence of hydroxyl group at the headgroup region. Lipoplex formation (DNA binding) and the release of the DNA from such lipoplexes were performed to understand the nature of interactions that prevail between these cationic cholesterol aggregates and duplex DNA. The interactions between such gemini lipids and DNA depend both on the presence of OH on the headgroups and the spacer length between the headgroups. Finally, we studied the effect of incorporation of each cationic gemini lipid into dipalmitoyl phosphatidylcholine vesicles using differential scanning calorimetry. The properties of the resulting mixed membranes were found again to depend upon the nature of the headgroup and the spacer chain length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational features and supramolecular structural organization in three aryl biscarbonates and an aryl biscarbamate with rigid acetylenic unit providing variable spacer lengths have been probed to gain insights into the packing features associated with molecular symmetry and the intermolecular interactions involving `organic' fluorine. Four structures but-2-yne-1,4-diyl bis(2,3,4,5,6-pentafluorophenylcarbonate), 1; but-2-yne-1,4-diyl bis(4-fluorophenylcarbonate), 2; but-2-yne-1,4-diyl bis(2,3,4,5,6-pentafluorophenylcarbamate), 3 and hexa-2,4-diyne-1,6-diyl bis(2,3,4,5,6-pentafluorophenylcarbonate), 4 have been analyzed in this context. Compound 1 adopts a non-centrosymmetric ``twisted'' (syn) conformation, whereas 2, 3 and 4 acquire a centrosymmetric ``extended'' (anti) conformation. Weak intermolecular interactions and in particular those involving fluorine are found to dictate this conformational variation in the crystal structure of 1. A single-crystal neutron diffraction study at 90 K was performed on 1 to obtain further insights into these interactions involving `organic' fluorine.