991 resultados para acide gras
Resumo:
Abstract interpretation-based data-flow analysis of logic programs is, at this point, relatively well understood from the point of view of general frameworks and abstract domains. On the other hand, comparatively little attention has been given to the problems which arise when analysis of a full, practical dialect of the Prolog language is attempted, and only few solutions to these problems have been proposed to date. Existing proposals generally restrict in one way or another the classes of programs which can be analyzed. This paper attempts to fill this gap by considering a full dialect of Prolog, essentially the recent ISO standard, pointing out the problems that may arise in the analysis of such a dialect, and proposing a combination of known and novel solutions that together allow the correct analysis of arbitrary programs which use the full power of the language.
Resumo:
Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user deñned, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples and report on an implementation of our ideas.
Resumo:
Logic programming systems which exploit and-parallelism among non-deterministic goals rely on notions of independence among those goals in order to ensure certain efficiency properties. "Non-strict" independence (NSI) is a more relaxed notion than the traditional notion of "strict" independence (SI) which still ensures the relevant efficiency properties and can allow considerable more parallelism than SI. However, all compilation technology developed to date has been based on SI, because of the intrinsic complexity of exploiting NSI. This is related to the fact that NSI cannot be determined "a priori" as SI. This paper filis this gap by developing a technique for compile-time detection and annotation of NSI. It also proposes algorithms for combined compiletime/ run-time detection, presenting novel run-time checks for this type of parallelism. Also, a transformation procedure to eliminate shared variables among parallel goals is presented, aimed at performing as much work as possible at compile-time. The approach is based on the knowledge of certain properties regarding the run-time instantiations of program variables —sharing and freeness— for which compile-time technology is available, with new approaches being currently proposed. Thus, the paper does not deal with the analysis itself, but rather with how the analysis results can be used to parallelize programs.
Resumo:
The agent programming landscape has been revealed as a natural framework for developing “intelligence” in AI. This can be seen from the extensive use of the agent concept in presenting (and developing) AI systems, the proliferation of agent theories, and the evolution of concepts such as agent societies (social intelligence) and coordination.
Resumo:
CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system.
Resumo:
Certain aspects of functional programming provide syntactic convenience, such as having a designated implicit output argument, which allows function cali nesting and sometimes results in more compact code. Functional programming also sometimes allows a more direct encoding of lazy evaluation, with its ability to deal with infinite data structures. We present a syntactic functional extensión of Prolog covering function application, predefined evaluable functors, functional definitions, quoting, and lazy evaluation. The extensión is also composable with higher-order features. We also highlight the Ciao features which help implementation and present some data on the overhead of using lazy evaluation with respect to eager evaluation.
Resumo:
Ciao Prolog incorporates a module system which allows sepárate compilation and sensible creation of standalone executables. We describe some of the main aspects of the Ciao modular compiler, ciaoc, which takes advantage of the characteristics of the Ciao Prolog module system to automatically perform sepárate and incremental compilation and efficiently build small, standalone executables with competitive run-time performance, ciaoc can also detect statically a larger number of programming errors. We also present a generic code processing library for handling modular programs, which provides an important part of the functionality of ciaoc. This library allows the development of program analysis and transformation tools in a way that is to some extent orthogonal to the details of module system design, and has been used in the implementation of ciaoc and other Ciao system tools. We also describe the different types of executables which can be generated by the Ciao compiler, which offer different tradeoffs between executable size, startup time, and portability, depending, among other factors, on the linking regime used (static, dynamic, lazy, etc.). Finally, we provide experimental data which illustrate these tradeoffs.
Resumo:
Ciao Prolog incorporates a module system which allows sepárate compilation and sensible creation of standalone executables. We describe some of the main aspects of the Ciao modular compiler, ciaoc, which takes advantage of the characteristics of the Ciao Prolog module system to automatically perform sepárate and incremental compilation and efficiently build small, standalone executables with competitive run-time performance, ciaoc can also detect statically a larger number of programming errors. We also present a generic code processing library for handling modular programs, which provides an important part of the functionality of ciaoc. This library allows the development of program analysis and transformation tools in a way that is to some extent orthogonal to the details of module system design, and has been used in the implementation of ciaoc and other Ciao system tools. We also describe the different types of executables which can be generated by the Ciao compiler, which offer different tradeoffs between executable size, startup time, and portability, depending, among other factors, on the linking regime used (static, dynamic, lazy, etc.). Finally, we provide experimental data which illustrate these tradeoffs.
Resumo:
It is now widely accepted that separating programs into modules has proven very useful in program development and maintenance. While many Prolog implementations include useful module systems, we feel that these systems can be improved in a number of ways, such as, for example, being more amenable to effective global analysis and allowing sepárate compilation or sensible creation of standalone executables. We discuss a number of issues related to the design of such an improved module system for Prolog. Based on this, we present the choices made in the Ciao module system, which has been designed to meet a number of objectives: allowing sepárate compilation, extensibility in features and in syntax, amenability to modular global analysis, etc.
Resumo:
We discuss from a practical point of view a number of issues involved in writing Internet and WWW applications using LP/CLP systems. We describe Pd_l_oW, a public-domain Internet and WWW programming library for LP/CLP systems which we argüe significantly simplifies the process of writing such applications. Pd_l_oW provides facilities for generating HTML structured documents, producing HTML forms, writing form handlers, accessing and parsing WWW documents, and accessing code posted at HTTP addresses. We also describe the architecture of some application classes, using a high-level model of client-server interaction, active modules. We then propose an architecture for automatic LP/CLP code downloading for local execution, using generic browsers. Finally, we also provide an overview of related work on the topic. The PiLLoW library has been developed in the context of the &- Prolog and CIAO systems, but it has been adapted to a number of popular LP/CLP systems, supporting most of its functionality.
Resumo:
We discuss from a practical point of view a number of issues involved in writing Internet and WWW applications using LP/CLP systems. We describe PiLLoW, an Internet and WWW programming library for LP/CLP systems which we argüe significantly simplifies the process of writing such applications. PiLLoW provides facilities for generating HTML structured documents, producing HTML forms, writing form handlers, accessing and parsing WWW documents, and accessing code posted at HTTP addresses. We also describe the architecture of some application classes, using a high-level model of client-server interaction, active modules. Finally we describe an architecture for automatic LP/CLP code downloading for local execution, using generic browsers. The PiLLoW library has been developed in the context of the &-Prolog and CIAO systems, but it has been adapted to a number of popular LP/CLP systems, supporting most of its functionality.
Resumo:
This paper describes the current prototype of the distributed CIAO system. It introduces the concepts of "teams" and "active modules" (or active objects), which conveniently encapsulate different types of functionalities desirable from a distributed system, from parallelism for achieving speedup to client-server applications. The user primitives available are presented and their implementation described. This implementation uses attributed variables and, as an example of a communication abstraction, a blackboard that follows the Linda model. Finally, the CIAO WWW interface is also briefly described. The unctionalities of the system are illustrated through examples, using the implemented primitives.
Resumo:
CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system.
Resumo:
This paper describes the current prototype of the distributed CIAO system. It introduces the concepts of "teams" and "active modules" (or active objects), which conveniently encapsulate different types of functionalities desirable from a distributed system, from parallelism for achieving speedup to client-server applications. It presents the user primitives available and describes their implementation. This implementation uses attributed variables and, as an example of a communication abstraction, a blackboard that follows the Linda model. The functionalities of the system are illustrated through examples, using the implemented primitives. The implementation of most of the primitives is also described in detail.
Resumo:
Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user defined, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples.