959 resultados para Zebu - Embryos
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heat stress has negative effects on pregnancy rates of lactating dairy cattle. There are genetic differences in tolerance to heat stress; Bos taurus indicus (B. t. indicus) cattle and embryos are more thermotolerant than Bos taurus taurus (B. t. taurus). In the present study, the effects of sire and sire breed on conception and embryonic/fetal loss rates of lactating Holstein cows during the Brazilian summer were determined. In Experiment 1, cows (n = 302) were AI after estrus detection or at a fixed-time with semen from one Gyr (B. t. indicus) or one Holstein sire (B. t. taurus). Pregnancy was diagnosed 80 days after AI. In Experiment 2, cows (n = 811) were AI with semen from three Gyr and two Holstein sires. Pregnancy was diagnosed at 30-40 and at 60-80 days after AI. Cows diagnosed pregnant at the first examination but non-pregnant at the second were considered as having lost their embryo or fetus. Data were analyzed by logistic regression. The model considered the effect of sire within breed, sire breed, days postpartum, period of lactation, and AI type (AI after estrus versus fixed-time). There was no effect of the AI type, days postpartum or milk production on conception or embryonic loss rates. The use of Gyr bulls increased pregnancy rate when compared to Holstein bulls [9.1% (60/657) versus 5.0% (23/456), respectively, P = 0.008; data from Experiments 1 and 2 combined]. Additionally, in Experiment 2, cows inseminated using semen from sire #4 (Gyr) had lower embryonic loss (10%) when compared with other B. t. indicus (35.3% and 40%) or B. t. taurus sires (18.2% and 38.5%, P = 0.03). In conclusion, the use of B. t. indicus sires may result in higher conception rates in lactating Holstein cows during summer heat stress. Moreover, sire can affect embryonic loss and selection of bulls according to this criterion may result in higher parturition rates in lactating Holstein cows. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Heat stress has negative effects on bovine reproduction, particularly for European breeds (Bos taurus taurus) that are less thermotolerant than zebu cattle (Bos taurus indicus). Here, the evidence that spermatozoa and oocyte both contribute to early embryonic resistance to heat shock is demonstrated. In addition, the use of reproductive biotechnologies to improve bovine thermotolerance, are outlined by comparing data from taurus, indicus and crossbred genotypes. (c) 2005 Published by Elsevier B.V.
Resumo:
The objective was to investigate whether the productivity of rabbit does can be improved, when natural photoperiod is decreasing, by adopting a supplemental lighting program. Three experiments were conducted involving two groups: control, submitted to the natural decreasing photoperiod, and supplemented with a lighting program which provided 14 h light/24 h beginning at 10 weeks of age. In the first experiment, 20 nulliparous does, 10 from each group, were euthanized 8 h after being presented to a buck; the overall number of follicles, whose diameter exceeded I mm, was determined macroscopically. The right ovaries were collected, histologically analyzed, and electronically measured. In the second experiment, 30 nulliparous does, 15 from each group, were presented to a buck (day 1). Receptive does were euthanized on day 8 to evaluate embryonic survival (number of normal embryos/ovulation rate). In the third experiment, 48 nulliparous does, 24 from each group, were followed from the first presentation to the buck until the weaning of the first litter. The effect of treatment on reproductive and body weight traits of does, and litter performance traits, at birth and weaning, was evaluated. The average number of follicles whose diameter exceeded 1 mm was higher in the treatment group (12.05 +/- 1.07 vs. 8.63 +/- 1.00, P=0.03 7). Receptive does of the treatment group had heavier ovaries relative to those of the control group (790 +/- 59 vs. 470 +/- 64 mg, P=0.004), whereas no treatment difference regarding this trait was found for non-receptive ones. Treatment had a favorable effect on pregnancy rate of total exposed and of receptive does (80.0% vs. 33.3%, P=0.01, and 92.3% vs. 50.0%, P=0.02, respectively). The number of underdeveloped embryos was lower (0.067 +/- 0.380 vs. 2.500 +/- 0.455, P=0.004), embryonic survival up to day 8, and uterus weight was higher in the treatment group (0.839 +/- 0.075 vs. 0.534 +/- 0.087, P=0.033 and 13.83 +/- 0.72 vs. 10.99 +/- 0.84, P=0.037, respectively). Number of presentations tended to be lower (1.32 +/- 0.17 vs. 1.75 +/- 0.16, P=0.077) and adjusted litter size in the first reproductive cycle tended to be higher (7.09 +/- 0.89 vs. 5.22 +/- 0.68, P=0.091) in the treatment group relative to the control.
Resumo:
The objective of this study was to evaluate the factors that may affect conception rates (CR) following artificial insemination (AI) or embryo transfer (ET) in lactating Holstein cows. Estrous cycling cows producing 33.1 +/- 7.2 kg of milk/d received PGF(2 alpha) injections and were assigned randomly to 1 of 2 groups (AI or ET). Cows detected in estrus (n = 387) between 48 and 96 h after the PGF2a injection received AI (n = 227) 12 h after detection of estrus or ET (n = 160) 6 to 8 d later (1 fresh embryo, grade 1 or 2, produced from nonlactating cows). Pregnancy was diagnosed at 28 and 42 d after estrus, and embryonic loss occurred when a cow was pregnant on d 28 but not pregnant on d 42. Ovulation, conception, and embryonic loss were analyzed by a logistic model to evaluate the effects of covariates [days in milk (DIM), milk yield, body temperature (BT) at d 7 and 14 post-AI, and serum concentration of progesterone (P4) at d 7 and 14 post-AI] on the probability of success. The first analysis included all cows that were detected in estrus. The CR of AI and ET were different on d 28 (AI, 32.6% vs. ET, 49.4%) and 42 (AI, 29.1% vs. ET, 38.8%) and were negatively influenced by high BT (d 7) and DIM. The second analysis included only cows with a corpus luteum on d 7. Ovulation rate was 84.8% and was only negatively affected by DIM. Conception rates of AI and ET were different on d 28 (AI, 37.9% vs. ET, 59.4%) and 42 (AI, 33.8% vs. ET, 46.6%) and were negatively influenced by high BT (d 7). The third analysis included only ovulating cows that were 7 d postestrus. Conception rates of AI and ET were different on d 28 (AI, 37.5% vs. ET, 63.2%) and 42 (AI, 31.7% vs. ET, 51.7%) and were negatively influenced by high BT (d 7). There was a positive effect of serum concentration of P4 and a negative effect of milk production on the probability of conception for the AI group but not for the ET group. The fourth analysis was embryonic loss (AI, 10.8% vs. ET, 21.5%). The transfer of fresh embryos is an important tool to increase the probability of conception of lactating Holstein cows because it can bypass the negative effects of milk production and low P4 on the early embryo. The superiority of ET vs. AI is more evident in high-producing cows. High BT measured on d 7 had a negative effect on CR and embryonic retention.
Resumo:
The yolk syncytial layer (YSL) has been regarded as one of the main obstacles for a successful cryopreservation of fish embryos. The purpose of this study was to identify and characterize the YSL in Prochilodus lineatus, a fish species found in southeastern Brazil and considered a very important fishery resource. Embryos were obtained through artificial breeding by hormonal induction. After fertilization, the eggs were incubated in vertical incubators with a controlled temperature (28 degrees C). Embryos were collected in several periods of development up to hatching and then fixed with 2% glutaralclehyde and 4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.3). Morphological analyses were carried out under either light, transmission or scanning electron microscopy. The formation of the YSL in P. lineatus embryos starts at the end of the cleavage stage (morula), mainly at the margin of the blastoderm, and develops along the embryo finally covering the entire yolk mass (late gastrula) and producing a distinct intermediate zone between the yolk and the endodermal cells. The YSL was characterized by the presence of microvilli on the contact region with the yolk endoderm. A cytoplasmic mass, full of mitochondria, vacuoles, ribosomes, endomembrane nets and euchromatic nuclei, indicated a high metabolic activity. This layer is shown as an interface between the yolk and the embryo cells that, besides sustaining and separating the yolk, acts as a structure that makes it available for the embryo. The structural analyses identified no possible barriers to cryoprotectant penetration.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two experiments were designed to evaluate strategies to increase fertility of Bos indicus postpubertal heifers and nonlactating cows submitted to a fixed-time artificial insemination (TAI) protocol consisting of an intravaginal device containing 1.9 g of progesterone (CIDR) insertion + estradiol benzoate on Day 0, CIDR withdrawal + estradiol cypionate on Day 9, and TAI on Day 11. In Experiment 1, heifers (n = 1153) received a new or an 18-d previously used CIDR and, on Day 9, prostaglandin F(2 alpha) (PGF(2 alpha)) + 0, 200, or 300 IU equine chorionic gonadotropin (eCG). Heifers treated with a new CIDR had greater (least squares means +/- SEM) serum concentration of progesterone on Day 9 (3.06 +/- 0.09 ng/mL vs. 2.53 +/- 0.09 ng/mL; P < 0.05) and a smaller follicle at TAI (11.61 +/- 0.11 nim vs. 12.05 +/- 0.12 mm; P < 0.05). Heifers with smaller follicles at TAI had lesser serum progesterone, concentrations on Day 18 and reduced rates of ovulation, conception, and pregnancy (P < 0.05). Treatment with eCG improved (P < 0.05) follicle diameter at TAI (11.50 +/- 0.10 mm, 11.90 +/- 0.11 mm, and 12.00 +/- 0.10 mm, for 0, 100, and 200 IU, respectively), serum progesterone concentration on Day 18 (2.77 +/- 0.11 ng/mL, 3.81 +/- 0.11 ng/mL, and 4.87 +/- 0.11 ng/mL), and rates of ovulation (83.8%, 88.5%, and 94.3%) and pregnancy (41.3%, 47.0%, and 46.7%). In Experiment 2, nonlactating Nelore cows (n = 702) received PGF(2 alpha) treatment on Days 7 or 9 and, on Day 9, 0 or 300 IU cCG. Cows receiving PGF(2 alpha) on Day 7 had lesser serum progesterone concentrations on Day 9 (3.05 +/- 0.21 ng/mL vs. 4.58 +/- 0.21 ng/mL; P < 0.05), a larger follicle at TAI (11.54 +/- 0.21 mm vs. 10.84 +/- 0.21 mm; P < 0.05), and improved (P < 0.05) rates of ovulation (85.4% vs. 77.0%), conception (60.9% vs. 47.2%), and pregnancy (52.0% vs. 36.4%). Treatment with eCG improved (P < 0.05) serum progesterone concentration on Day 18 (3.24 +/- 0.14 ng/mL vs. 4.55 +/- 0.14 ng/mL) and the rates of ovulation (72.4% vs. 90.0%) and pregnancy (37.5% vs. 50.8%). In conclusion, giving PGF(2 alpha) earlier in the protocol in nonlactating cows and eCG treatment in postpubertal heifers and nonlactating cows improved fertility in response to a TAI (progesterone + estradiol) protocol. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective was to evaluate the effects of exogenous progesterone (P4) on reproductive performance of prepubertal Bos indicus heifers. Prepubertal Nelore heifers (n = 589; 24.0 +/- 1.13 mo; 298.0 +/- 1.89 kg; body condition score of 3.2 +/- 0.26; mean +/- SEM) were randomly assigned to receive, between experimental Days -12 and 0: no treatments (CIDR0; n = 113); a new intravaginal insert (CIDR) containing 1.9 g of P4 (CIDR1; n = 237); or a similar insert previously used three times, with each use occurring for 9 d (CIDR4; n = 239). An additional treatment group was pubertal heifers given 12.5 mg dinoprost tromethamine im on Day 0 (PGF; n = 346), and used as controls for evaluation of conception rates. on Day 0, transrectal palpation was done for uterine score evaluation (UtS; 1-3 scale), blood samples were taken for serum P4 concentrations, and follicle diameter (FD) was measured. The breeding season started on Day 1 and consisted of AI after detection of estrus between Days I and 45, and exposure to bulls between Days 46 and 90. There were effects of treatment (P < 0.05) on serum concentrations of P4 on Day 0 (0.37 +/- 0.16, 2.31 +/- 0.11, and 1.20 +/- 0.11 ng/mL for CIDR0, CIDR1, and CIDR4, respectively; mean SEM), FD on Day 0(9.45 +/- 0.24, 9.72 +/- 0.17, and 11.42 +/- 0.16 mm), UtS on Day 0 (1.49 +/- 0.06, 1.88 +/- 0.04, and 2.24 +/- 0.04), estrus detection rates at 7 d (19.5, 42.6, and 38.3%) and 45 d (52.2, 72.1, and 75.3%) of the breeding season, and on pregnancy rates at 7 d (5.3, 14.3, and 18.4%), 45 d (27.4, 39.2, and 47.7%) and 90 d (72.6, 83.5, and 83.7%) of the breeding season. Conception rate 7 d after the start of the breeding season was greater (P < 0.05) in heifers from the CIDR4 (46.8%) and PGF (43.8%) groups than in the CIDR0 (27.3%) and CIDR1 (33.7%) groups. In conclusion, exogenous P4 hastened puberty and improved pregnancy rates at the beginning of the breeding season in prepubertal Bos indicus heifers. Furthermore, previously used CIDR inserts were better than new inserts. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In some mares with lesions of the reproductive tract, embryo collection and survival rates are low or collection of embryos is not feasible. For these mares, oocyte transfer has been proposed as a method to induce pregnancies. In this report, a method for oocyte transfer in mares and results of oocyte transfer performed over 2 breeding seasons, using mares with long histories of subfertility and various reproductive lesions, are described.Human chorionic gonadotropin or an implant containing a gonadotropin-releasing hormone analog was used to initiate follicular and oocyte maturation. Oocytes were collected by means of transvaginal ultrasound-guided follicular aspiration. Following follicular aspiration, cumulus oocyte complexes were evaluated for cumulus expansion and signs of atresia; immature oocytes were cultured in vitro to allow maturation. The recipient's ovary and uterine tube (oviduct) were exposed through a flank laparotomy with the horse standing, and the oocyte was slowly deposited within the oviduct. Oocyte transfer was attempted in 38 mares between 9 and 30 years old during 2 successive breeding seasons. All mares had a history of reproductive failure while in breeding and embryo transfer programs. Twenty pregnancies were induced. Fourteen of the pregnant mares delivered live foals. Results suggest that oocyte transfer can be a successful method for inducing pregnancy in subfertile mares in a commercial setting..